
Chapter 17

Approximation Schemes for
some problems with
optional connectivity

Lemma 17.0.1. The average degree in a forest is at most 2.

Proof. Consider a forest F . Since m(F) n(F) � 1,

X

{degF (v) : v 2 V (F)} = 2m(F) 2(n(F) � 1) < 2n(F)

Corollary 17.0.2. Suppose some vertices of a forest are designated live and the
others are designated dead. Assume that no leaf is dead. The average degree of
live vertices is at most 2.

Proof.

X

{degF (v) : v live} =
X

{degF (v) : v 2 V (F)} � {degF (v) : v dead}

Since
P

{degF (v) : v 2 V (F)} 2n(F) by Lemma 17.0.1 and {degF (v) :
v dead} � 2|{dead vertices}| by assumption, we infer that

P

{degF (v) : v live}
2|{live vertices}|.

17.1 Introduction

In the Steiner forest problem, we are given a pair (G, D) where G is an edge-
weighted undirected graph with and D is a set of pairs (si, ti) of vertices. The
pairs are called demands, and the vertices that appear in demands are called
terminals. The goal is to find a minimum-weight forest F that, for every demand

223

224CHAPTER 17. APPROXIMATION SCHEMES FOR SOME PROBLEMSWITHOPTIONAL CONNECTIVITY

(si, ti) 2 D, contains a path in F from si to ti. This problem generalizes the
Steiner tree problem in networks.

There is a polynomial-time 2-approximation algorithm [?], but the problem
doesn’t have an approximation scheme unless P=NP [?, ?]. In this chapter, we
describe an approximation scheme for the case where the input graph is required
to be planar.

The framework of Chapter 15 is used, along with the brick decomposition of
Chapter 16 is used but two additional ingredients are needed. First, since Steiner
forest is NP-hard even in bounded-branchwidth graph, in the Branchwidth step
of the framework of Section 15.5, an approximation scheme must be used.

Theorem 17.1.1. For any positive integer w and any ✏ > 0, there is a polynomial-
time algorithm that, given an edge-weighted graph G of branchwidth at most b
and a set of demands, finds a 1 + ✏-approximate solution to the instance (G, D)
of Steiner forest.

Unfortunately, the degree of the polynomial depends on b, which leads to an
ine�cient PTAS for Steiner forest.1

Second, in constructing the brick decomposition of Section 16.1, one must
start with a connected subgraph K of G. The approximation scheme for Steiner
tree chooses K to be a 2-approximate solution to minimum Steiner tree. The
analogous approach does not su�ce in the case of Steiner forest since a 2-
approximate solution F to Steiner forest need not be connected. One might
think that the following approach would work: for each connected component K
of F , define the subinstance consisting just of the demands connected by K, find
an 1+ ✏-approximate solution to each such instance, and take the union of these
solutions. Unfortunately, there is no guarantee that a 1+✏-approximate solution
exists whose connectivity between terminals respects the connected components
of an arbitrary 2-approximate solution. However, there is an algorithm for
augmenting a 2-approximate solution F to obtain a somewhat costlier subgraph
H such that there is a 1 + ✏-approximate solution whose connectivity between
terminals respects the connectivity of H. The algorithm for this step is based
on an algorithm called PC Clustering.

Given an instance (G, D) of Steiner forest, and given a feasible solution H,
we define the induced instances to be (G, D1), . . . , (G, Dk) where K1, . . . , Kk

are the connected components of H, and, for i = 1, . . . , k, Di consists of the
demands (si, ti) 2 D such that si and ti belong to Ki.

Theorem 17.1.2 (Steiner-forest clustering). There is a polynomial-time algo-
rithm that, given a number ✏ > 0 and a (not necessarily planar) Steiner-forest
instance (G, D), outputs a feasible solution H such that

weight(H) (
4

✏
+ 2)OPT(G, D) (17.1)

1There is an approach to obtaining an e�cient PTAS for Steiner forest in planar graphs.

17.2. PC CLUSTERING 225

and the induced instances (G, D1), . . . , (G, Dk) satisfy

X̀

i=1

OPT(G, Di) (1 + ✏)OPT(G, D) (17.2)

17.2 PC Clustering

The proof of Theorem 17.1.2 builds on a more general algorithm:

Theorem 17.2.1 (PC Clustering). There is an algorithm, PC Clustering, that,
given an edge-weighted graph G0 and an assignment �(·) of potentials to vertices
of G0, outputs a subgraph H 0 with the following properties:

weight(H 0) 2
X

{�(v) : v 2 V (G0)} (17.3)

and, for any subgraph L0 of G0, there exists a subset Q of V (G0) such that

sum{�(v) : v 2 Q} weight(L0) (17.4)

and if two vertices v1, v2 62 Q are connected by L0 then they are connected by
H 0.

How is the PC Clustering algorithm used to do Steiner-forest clustering?
The algorithm of Theorem 17.1.2 is as follows:

S1 Find a 2-approximate solution F to the Steiner-forest instance (G, D).

S2 For each tree T in the solution F ,

• contract G to a single vertex v, and

• assign potential �(v) = ✏�1weight(T).

S3 Apply the PC Clustering algorithm to the contracted graph G0 with potential
assignment �(·). Let H 0 be the output.

S4 Let H consist of the edges in H 0 together with the edges in F .

Since F is a feasible solution to the original Steiner-forest instance(G, D),
so is H. To complete the proof of Theorem 17.1.2, we show that this algorithm
satisfies Inequalities 17.1 and 17.2.

By Inequality 17.3 and the definition of �(·) in the algorithm, weight(H)
2(✏�1 · 2 weight(F)). Since F is a 2-approximate solution to the Steiner-forest
instance, weight(F) 2OPT(G, D). Combining these inequalities proves In-
equality 17.1.

The proof of Inequality 17.2 is more involved. Let L be an optimal solution
to the original Steiner-forest instance. Let L0 be the set of edges of G0 that are
in L, i.e. the edges of G that are not in F . Let Q be the corresponding subset
of V (G0) whose existence is asserted by Theorem 17.2.1. Each vertex v in Q

226CHAPTER 17. APPROXIMATION SCHEMES FOR SOME PROBLEMSWITHOPTIONAL CONNECTIVITY

corresponds to a tree Tv of F . By Inequality 17.4 and the definition of �(·), it
follows that

X

{weight(Tv) : v 2 Q} ✏ weight(L0) (17.5)

We derive a solution L̃ from L0 by adding the edges of Tv for each v 2 Q. It
follows from Inequality17.5 that weight(L̃) (1 + ✏)

17.2.1 The PC Clustering algorithm

The input to PC Clustering is an edge-weighted graph G and an assignment
�(·) of potentials to the vertices of G. Assume that G has no self-loops.

The algorithm consists of two phases. We first describe the intuition for
phase and then present a more formal description.

We think of the algorithm as a process taking place in continuous time. All
the vertices with positive potential start reducing the weights of their incident
edges at a rate of one unit of weight per second; the potentials of these vertices
decrease at the same rate. An edge both of whose endpoints have positive
potential has its weight reduced at a rate of two units of weight per second. As
soon as a vertex’s potential reaches zero, it stops participating in this process.
As soon as the weight of some edge uv reaches zero, the edge uv is contracted:
the new vertex formed by coalescing u and v is assigned a potential equal to
the current value of u’s potential plus the current value of v’s potential. Any
resulting self-loops are deleted. This process continues until there is no vertex
with positive potential.

At a given time in the process, we say a vertex v is living if its potential �(v)
is positive, and dead otherwise.

This continuous-time process can be simulated in discrete time.:

PC-clustering,Phase 1:

input: an initial graph G with edge-weights weight(·),
and an initial assignment �(·) of potentials to vertices
while there is a vertex v with positive potential

�1 := min{�(v) : v 2 V (G), �(v) > 0}
�2 := min {weight(uv) : uv 2 E(G), one of {u, v} has positive potential}

[{weight(uv)/2 : uv 2 E(G), both u and v have positive potential}
� := min{�1, �2} # which happens first?
for every vertex u with positive potential,

�(u) := �(u) � �
weight(uv) := weight(uv) � � for every incident edge uv

if some edge uv now has zero length,
contract uv, creating new vertex w

† assign �(w) := �(u) + �(v)
delete any self-loops

F1 := {edges contracted}

17.2. PC CLUSTERING 227

It is clear that Phase 1 be implemented to run in polynomial time. Using the
method outlined in Section 4.3.4 for maintaining a bounded-outdegree orienta-
tion under edge deletion and contraction, one can implement the algorithm in
O(n log n) time.

The output of Phase 1 is the set F1 of edges contracted.
Phase 2 is as follows:

PC-clustering, Pruning Phase:

initialize F2 := F1

while there is an edge e 2 F2 that is the only edge incident to a vertex v with �(v) = 0,
delete e from F2

The output of Phase 2 is the set F2 of edges remaining.
A simple induction shows the following:

Lemma 17.2.2. F1 is a forest of G.

17.2.2 The weight of the output from the PC Clustering

algorithm

For the purpose of analysis, it is helpful to return to the continuous-time in-
terpretation of Phase 2. The time is initially zero. In each iteration, when
potentials and weights are reduced by �, this represents time advancing by �.

The graph G changes over the course of Phase 1 due to edge contractions
and deletions. Let G(t) denote the graph G at (simulated) time t. For a vertex
v of G(t), if the potential of v was positive at time t, we say v was live at that
time, and otherwise we say v was dead. Let Live(t) denote the set of vertices of
G(t) that were live at time t. Let H(t) denote the subgraph of G(t) consisting
of those edges of F2 that belong to G(t).

Lemma 17.2.3. weight(F2) 2
P

{�(v) : v 2 V (G(0))}.

Proof. Each edge that enters F1 does so after its weight is reduced to zero. We
can account for the weight of F2 by considering the total reduction in weight of
edges of F2 during the course of Phase 1. Thus the weight of 2 is

Z

(rate of weight reduction of edges of F2 at time t)dt

The rate of weight reduction at time t is the sum of degrees of live vertices at
time t, so
Z

(rate of weight reduction of edges of F2 at time t)dt =

Z

⇣

X

{degH(t)(v) : v 2 Live(t)}
⌘

dt

which is at most
R

2|Live(t)|dt by Corollary 17.0.2.
Since a vertex becomes dead when its potential goes to zero, the integral

R

|Live(t)|dt is
P

{�(v) : v 2 V (G(0))}, which completes the proof.

