
Chapter 16

Approximation schemes for
Steiner problems

The Steiner tree problem in networks is as follows:

• input: an undirected graph G with edge-lengths, a subset of vertices called
the terminals

• output: a minimum-weight connected subgraph of G that spans the ter-
minals

We can consider two approaches for finding an approximation scheme. Us-
ing the framework described in Section 15.5 yields a linear-time approximation
scheme but the “constant” is doubly exponential in a polynomial in ✏�1. All we
have to do to obtain this approximation scheme is to provide an implementation
of the Spanner step. A more sophisticated approach yields another linear-time
approximation scheme, one in which the constant is only singly exponential in
a polynomial in ✏�1.

Both approaches use a structure called a brick decomposition of the in-
put graph. The brick decomposition can be used in obtaining approximation
schemes for other problems as well.

16.1 Introducing the brick decomposition

Given a precision parameter ✏ > 0, an embedded graph G with edge-weights,
and a connected subgraph K of G, the brick decomposition construction selects a
subgraph M of G that includes K and has weight at most c

1

✏�1weight(K) for a
constant c

1

. (For the construction we give, weight(M)  (4✏�1 + 1)weight(K).)
The starting subgraph K is called the skeleton of the brick decomposition.

For each face f of M , the subgraph of G enclosed in f is called the brick
corresponding to f , and the boundary of the brick consists of the edges of face

193

194CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

f . The brick decomposition is the decomposition of G into bricks. Note that
bricks include their boundaries, and so the bricks are not disjoint.

The special properties of a brick decomposition arise from its construction,
which we describe in Section 16.4. Here we describe how a brick decomposition
is used in approximation schemes for Steiner tree, and we describe the special
properties of brick decomposition that are relevant.

Let G be a planar embedded graph with edge-weights, and let Q be a set of
terminals. We use OPT(G, Q) to denote an optimal Steiner tree. We assume for
simplicity of presentation that G has degree at most three; a simple transforma-
tion using zero-weight edges can be used to achieve this. Fix a precision ✏ > 0.
As mentioned earlier, there are two approaches to obtaining a approximation
scheme for Steiner tree, but they start out the same.

Step 16.1. Let K be a Steiner tree whose weight is at most two times
optimal.

There is a linear-time algorithm to find such a Steiner tree.

Step 16.2. Construct a brick decomposition with mortar graph M .

The algorithm for constructing a brick decomposition runs in time that is linear
when ✏ is considered to be a constant.

Since weight(K)  2weight(OPT(G, Q)) and weight(M)  c
1

✏�1weight(K),
we infer that weight(M)  2c✏�1weight(OPT(G, Q)), where OPT(G, Q) is an
optimal Steiner tree.

Before continuing with the description of the algorithms, we describe the
special property underlying the correctness of the algorithms. The basic idea is
that there is a nearly optimal Steiner tree that, for each brick B, “crosses” the
boundary of B at most a constant number of times (where we consider ✏ to be
constant).

To formalize the notion of crossing used here, we first describe a transfor-
mation of G called shattering. The shattered graph bG is obtained from G and
M as follows.

Start from M .
For each face f of the embedded graph M ,

the vertices and edges of of f occur also on
the boundary of the corresponding brick;
embed a copy of the corresponding brick within f .
For each vertex v on f ,

use an artificial zero-weight edge to connect v with the copy of v.

This process is illustrated in Figure 16.1. Each vertex v that lies on M occurs
also in some number of bricks; therefore bG contains several copies of v. The
copy that in bG lies on M is identified with the original vertex of G, and the
others are said to be duplicates. In particular, the terminals are considered to
belong to M , not to the bricks.

16.1. INTRODUCING THE BRICK DECOMPOSITION 195

(a) (b) (c)

(d)

Figure 16.1: (a) An input graph Gin with bold edges forming the mortar graph
M . (b) The mortar graph M . (c) The set of bricks corresponding to M (d)
Bricks shattering the graph.

Now we can state the property underlying our use of the brick decomposition.
Because of the artificial zero-weight edges, bG mimics G in that any tree T in
G corresponds to a tree in bG of the same weight and spanning all the vertices
spanned by G, and vice versa. We state the theorem in somewhat greater
generality, in terms of a forest instead of a tree.

Theorem 16.1.1 (Steiner-Tree Structure Theorem). For any forest F in G,
there exists a forest bF of bG such that

• weight(bF)  (1 + ✏)weight(F)

• bF spans all the vertices of M that F spans, and

• for each brick B, bF includes at most c
2

✏�3.5 of the artificial edges incident
to B.

Since we are willing to accept approximately optimal solutions, therefore, the
algorithm can restrict its attention to Steiner trees that, for each brick, connect
between that brick and the rest of the graph only through a few artificial edges.
This doesn’t quite give us an e�cient dynamic program since the algorithm
doesn’t know which artificial edges are used by the shortest such Steiner tree.
However, we can get around this obstacle by using the fact that the mortar
graph is longer than the optimal Steiner tree by only a constant factor. This
fact allows us to select a constant number of artificial edges per brick, and to
further restrict the Steiner tree to use no other artificial edges.

The number of such artificial edges is controlled by an integer parameter ⇢.
We use @B to denote the cycle formed by the boundary of brick B. The value
of ⇢ is specified later.

Step 16.3. For each brick B, designate at most ⇢ of the vertices of the
boundary @B as portal vertices, as follows:

Let v
0

be an arbitrary vertex of @B.

196CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

Designate v
0

as a portal vertex.
Set i = 0.
Repeat:

Set i = i + 1.
Let vi be the first vertex of @B[vi�1

, ·] such that
weight(@B[vi�1

, vi]) > weight(@B)/⇢.
If v

0

2 V (@B(vi�1

, vi]), stop.
Otherwise, designate vi as a portal vertex.

Lemma 16.1.2 (Portal Coverage Lemma). For any vertex x on @B, there is a
portal vertex vi such that

weight(@B[vi, x])  weight(@B)/⇢

Proof. Let k be the number of iterations. For some i, the vertex x lies on the
subpath B[vi, v

(i+1) mod k).

Lemma 16.1.3 (Portal Cardinality Lemma). Each brick has at most ⇢ portal
vertices.

Proof. Let k be the number of iterations. Each iteration selects a subpath of
weight more than weight(@B)/✓, so we have weight@B �

Pp
i=1

weight@B[vi�1

, vi] >
k weight(@B)/✓, and so it follows that k < ⇢.

An artificial edge is called a portal edge if it is incident to a portal vertex.
Let bG⇢ denote the subgraph of bG by excluding artificial edges that are not portal
edges.

Now we combine the fact that weight(M)  2c
1

✏�1weight(OPT(G, Q)) with
the fact that there is an approximately optimal forest using only c

2

✏�3.5 artificial
edges per brick.

Corollary 16.1.4. Suppose the portal parameter ⇢ is assigned 8c
1

c
2

✏�5.5. For
any forest F in G, there exists a forest F̃ of bG⇢ such that

• weight(F̃)  (1 + 2✏)weight(F), and

• for any vertices u and v of M , if F connects u and v then so does F̃ .

Proof. By applying the Steiner-Tree Structure Theorem (Theorem 16.1.1), we
obtain a forest bF of bG having weight at most (1+✏)weight(F). However, bF uses
artificial edges that are not portal edges, so we must modify it.

Let B be a brick, and let xy be an artificial edge incident to B in bG that is
used by bF , where x lies on the boundary of B and y belongs to M . Note that
x and y correspond to the same vertex of G. By the Portal Coverage Lemma
(Lemma 16.1.2), there is a subpath P of @B from x to a portal vertex vi, and
weight(P)  weight(@B)/⇢. We replace the artificial edge xy with (i) the copy
of P in bG that belongs to the brick copy B, (ii) the portal edge incident to vi,

16.2. SPANNER 197

and (iii) the copy of P in bG that belongs to M . The increase in weight is at
most 2weight(@B)/⇢.

We similarly replace each artificial edge incident to B with one copy of a
path, a portal edge, and another copy of the path. Since bF used at most c

2

✏�3.5

artificial edges incident to B, the total weight increase associated with brick B
is at most

c
2

✏�3.5 · 2

⇢
weight(@B)

We carry out the process on every brick B. The total weight increase is at most

c
2

✏�3.5 · 2

⇢

X

B

weight(@B)

where the sum is over all bricks in the brick decomposition. Each edge of M is
on the boundary of two bricks, so

X

B

weight(@B)  2weight(M)  4c
1

✏�1weight(OPT(G, Q))

Therefore the total weight increase is at most

d✏�3.5 · 2

⇢
· 4c

1

✏�1weight(OPT(G, Q))

which is at most ✏ weight(OPT(G, Q)) if we set ⇢ =e8c
1

c
2

✏�5.5e.

16.2 Spanner

Building on Corollary 16.1.4, we can complete the steps of the spanner con-
struction.

Step 16.4.

Initialize G
1

to include M .
For each brick B,

for each subset S of portal vertices of @B,

* add to G
1

an optimal Steiner tree T of S in B

Can the line marked * be implemented fast?

Lemma 16.2.1. Given an n-vertex strict plane graph B with edge-weights or
vertex-weights, and given a k-element set Q of terminals all on the boundary
of a single face of B, there is an O(k3n) algorithm to find a minimum-weight
Steiner tree.

Problem 16.2.2. Prove Lemma 16.2.1.

We need to show that the resulting graph G
1

satisfies the requirements of a
spanner for Steiner tree.

198CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

Theorem 16.2.3. Let G
1

be the graph resulting from the algorithm described
above applied to a plane graph G with edge-weights and with terminal set Q.
Then

1. weight(G
1

)  ↵weight(OPT (G, Q)), and

2. weight(OPT(G
1

, Q))  (1 + 2✏)weight(OPT(G, Q))

where ↵ depends only on ✏.

Proof. To show the first property, note the tree T added to the spanner in Line *
of Step 16.4 has weight at most weight(@B). Since @B has at most ⇢ portal
vertices, the number of trees added for B is at most 2⇢. Therefore the total
weight of all the trees added for B is at most 2⇢weight(@B). Summing over
all bricks B, the total weight is at most 2⇢ · 2weight(M). Since weight(M) 
2c

1

✏�1weight(OPT(G, Q)) and ⇢ = d8cd✏�5.5e, we can set ↵ = 2c
1

✏�12⇢ to
achieve the first property.

For the second property, suppose T is an optimal Steiner tree. By Corol-
lary 16.1.4, there exists a tree T̃ of bG⇢ such that the vertices of M that are
connected in T are also connected in T̃ . In particular, since M contains all
the terminals, T̃ is a Steiner treee of the terminals. Moreover, weight(T̃) 
(1 + 2✏)weight(T).

Consider each brick B in turn, and consider the intersection of T̃ with B.
The intersection consists of a collection of connected components, each of which
includes some subset of portal vertices. For each connected component K, re-
place K with the minimum-weight Steiner tree in B connecting the same portal
vertices, specifically the one included in Line * of Step 16.4. The replacement
does not increase the weight. After all the replacements are complete, the re-
sulting tree includes only edges belonging to G

1

.

16.3 Beyond spanners: A more e�cient PTAS
for Steiner tree

16.4 Brick decomposition: the construction

In this section, we give the algorithm for constructing a brick decomposition.
Let G be the plane graph, let K be the skeleton (a connected subgraph of G),
and let ✏ > 0 be the error parameter.

def BrickDecomposition(G, K, ✏)
input: plane graph G, skeleton K (connected subgraph of G), precision parameter ✏ > 0

Initialize M = K
For each face f of K,
1 Decompose the subgraph of G embedded in f into strips,
2 and add strip boundaries to M

16.4. BRICK DECOMPOSITION: THE CONSTRUCTION 199

3 For each strip D,
4 identify columns C

1

, . . . , Ct

5 for i = 0, . . . , k � 1, let wi =
P

{weight(Cp) : p ⌘ i (mod k)}
6 let i⇤ = minarg iwi

7 add to M the columns Cp such that p ⌘ i⇤ (mod k)

The lines marked 1 and 4 will be explained in more detail. The parameter k in
Lines 5 and 7 is set to d✏�1e.

16.4.1 Strip decomposition

A simple region of a graph G is defined by a non-self-crossing cycle of darts.
The edges,vertices, and faces that lie “to the right” of the cycle of darts are
considered to belong to the region. The boundary of a region R is the non-self-
crossing cycle, and is denoted @R. Here are two examples:

The figures illustrate that an edge can occur twice on the boundary of a simple
region. A face of an edge subgraph of G defines a simple region of G; the
boundary is the boundary of the face.

A (1+✏)-strip of G is a simple region R of G whose boundary is @R = P
1

�P
2

where P
1

and P
2

are paths satisfying the following condition:

For any path L whose only vertices in Pi are start(L) and end(L),

weight(Pi[start(L), end(L)])  (1 + ✏)weight(L) (16.1)

Informally, Pi is a nearly shortest path between its endpoints among
paths that stay inside the region.

We will typically refer to P
1

and P
2

as the southern and northern boundaries
of the strip, but the distinction is arbitrary.

The basic strategy for decomposing a simple region R into strips is straight-
forward.

When there is a path L whose only vertices in @R are start(L) and end(L)
such that

(1 + ✏)weight(L)  weight(@R[start(L), end(L)]),

split R into subregions R
1

and R
2

by cutting along L, and then recursively
subdivide each subregion. The first modification to this strategy is to ensure
that for one of these regions, say R

1

, there is no need for further splitting. To
achieve this, we choose L to be in a sense as close as possible to the boundary on
the R

1

side. This enables us to bound the total weight of all strip boundaries.
The second modification to the strategy involves relaxing the requirement

that no internal vertices of L lie on @R. Instead, we require that L not cross

200CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

@R. This modification is not necessary for the construction; it allows for a more
convenient implementation.

Line 1 of the algorithm BrickDecomposition(G, K, ✏) tells us to take the
subgraph Y of G embedded in a face f of K, and decompose it into strips. Note
that the boundary of f in G might not be a simple cycle; edges and vertices might
occur multiple times on the boundary. The first step in strip decomposition is
to modify Y by duplicating edges and vertices on the boundary of f , getting a
plane graph H

0

with a face f
0

that consists of duplicates of all the edges and
vertices of f . Here are some examples of this transformation:

In the last example, the skeleton K is a tree. It has only one face f , and the
entire graph is embedded in that face. Every edge occurs twice on the face. The
number of occurences of each vertex v is degK(v). In the graph H

0

resulting
from the transformation, every edge of f is represented by two duplicates in the
face f

0

, and each vertex v is represented by degK(v) duplicates.
To describe the rest of strip decomposition, we need a definition. Let H be

a plane graph and let f be a face of H. An (1 + ✏)-shortcut of H with respect
to f is a shortest path P in H with the following properties:

• start(P) and end(P) belong to the boundary of f , and

• the start(P)-to-end(P) subpath of the boundary of f has weight that is
greater by a 1 + ✏ factor than weight(P):

(1 + ✏)weight(P)  weight(�(f)[start(P), end(P)])

16.4. BRICK DECOMPOSITION: THE CONSTRUCTION 201

The (1 + ✏)-shortcut P is minimally enclosing if there is no (1 + ✏)-shortcut
whose start and end lie on the start(P)-to-end(P) subpath of the boundary of
f (except for one whose start and end are the same as that of P).

We give a procedure, StripDecomposition(H, f), that is applied to a plane
graph H with a face f . (The procedure is somewhat abstract; a fast imple-
mentation will be given later.) To complete the strip decomposition, we call
StripDecomposition(H

0

, f
0

).

def StripDecomposition(H, f):
1 If there is no (1 + ✏)-shortcut, return {H}.

Let P be a minimally enclosing (1 + ✏)-shortcut.
2 Let D be the subgraph enclosed by the cycle �(f)[start(P), end(P)] � rev(P)
3 Let H 0 be the graph obtained from H by deleting D � P
4 Let f 0 be the face of H 0 that is obtained from f by replacing �(f)[start(P), end(P)] with P .
5 return {D} [StripDecomposition(H 0, f 0)

The subgraph D found in Line 2 is called a strip. The boundary of the strip is
�(f)[start(P), end(P)] � rev(P). We refer to P as the southern boundary and
we refer to �(f)[start(P), end(P)] as the northern boundary. (The distinction
is not so important.)

Lemma 16.4.1. • Every subpath of the southern boundary of a strip is a
(1 + ✏)-shortest path.

• Every proper subpath of the northern boundary of a strip is a (1 + ✏)-
shortest path.

Lemma 16.4.1 permits some leeway in Line 1 of StripDecomposition. The
algorithm can terminate in Line 1 provided a weaker condition holds, that there
are vertices u and v on f such that there is no (1+ ✏)-shortcut whose endpoints
are both in �(f)[u, v] and none whose endpoints are both in �(f)[v, u]. If this
condition holds, H is itself a strip; by designating

Note that the weight of the boundary of f 0 is less than that of f by at least
✏ weight(P). Therefore we can charge weight(P) to the reduction in boundary
weight in going from H, f to H 0, f 0. Therefore, when StripDecomposition(H

0

, f
0

)
is executed, the total weight of all shortcuts found is at most ✏�1 times the weight
of the boundary of f

0

.

Lemma 16.4.2. Over all faces f of K, the total weight of all shortcuts found
is at most ✏�12weight(K).

Proof. Each edge of K occurs over all faces f of K, so the sum of weights of
boundaries of faces of K is 2 weight(K). Combining this with the above charging
argument yields the lemma.

202CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

16.4.2 Columns

For each strip D, Line 2 of BrickDecomposition identifies columns within D.
We now describe the algorithm to identify columns. We use S and N to denote
the southern and northern boundaries of D.

def FindColumns(D, S, N):
Let v

0

, v
1

, . . . , vk be the vertices of S in west-to-east order.
Initialize v⇤ = v

0

.
For i = 1, 2, . . . , k,

If weight(S[v⇤, vi]) > ✏ distD(vi, N):

* Designate as a column a shortest vi-to-N path in D.
v⇤ = vi

The start vi of a column is called the base of the column. Each column is a
path from south to north. Note that the endpoints v

0

and vk of the southern
boundary are endpoints of the north boundary. We consider the one-vertex path
consisting of v

0

to be a column. Similarly the one-vertex path consisting of vk
is a column.

Let w
0

, w
1

, . . . , wr be the bases of the columns found by the algorithm. The
condition in the algorithm ensures that

weight(S[wj�1

, wj]) > ✏ distD(wj , N)

for j = 1, . . . , r. We obtain the following lemma.

Lemma 16.4.3. The sum of the weights of columns of a strip is at most ✏�1

times the weight of the strip’s southern boundary.

In Line 7 of BrickDecomposition, the weight of columns of strip D that
are added to M is at most 1

k times the total weight of the columns of D. Since
k = d✏�1e, the weight of columns of strip D that are added to M is at most the
weight of the southern boundary of D.

Corollary 16.4.4. The length of the mortar graph is (4✏�1+1)weight(K) where
K is the skeleton.

16.5 Statement of subroutine lemmas for Steiner
tree structure theorem

For the following three lemmas, G is a planar embedded graph, P is an 1 + ✏-
short path forming part of the boundary of G, and T is a tree in G that intersects
P only at leaves of T .

The first lemma is illustrated in Figure 16.2.

Lemma 16.5.1. There is a procedure Span0 such that Span0(P, T) returns a
subpath of P spanning V (T)\V (P) whose total length is at most (1+✏)length(T).

16.5. STATEMENTOF SUBROUTINE LEMMAS FOR STEINER TREE STRUCTURE THEOREM203

Figure 16.2: A subgraph is squished to a 1+✏-short path. The resulting subpath
includes all vertices common to the subgraph and the path, and is not much
longer.

Proof. Let P 0 be the shortest subpath of P that spans all the vertices of T \ P .
There is a path Q in T between the endpoints of T . Since P is 1 + ✏-short,
length(P 0) < (1 + ✏)length(Q)  (1 + ✏)length(T).

Definition 16.5.2 (Joining vertex). Let H be a subgraph of G such that P is
a path in H. A joining vertex of H with P is a vertex of P that is the endpoint
of an edge of H � P .

The second lemma is illustrated in Figure 16.3. The proof is given in Sec-
tion 16.6.7.

Lemma 16.5.3. There is a procedure Span1(P, T, r) that, for a vertex r of T ,
returns a subgraph of P [T of length at most (1+ ✏)length(T) that spans all the
vertices of {r} [(V (T) \ V (P)) and has at most ✏�1.45 joining vertices with P .

r r

Figure 16.3: The output subgraph spans all vertices of P spanned by the input
subgraph, and also spans x, but the output subgraph has fewer joining vertices
with P .

The third lemma is illustrated in Figure 16.4. The proof is given in Sec-
tion 16.6.8.

Lemma 16.5.4. There is a procedure Span2(P, T, x, y) that, for x and y ver-
tices of T , returns a subgraph of P [T of length at most (1 + 2✏ + ✏2)length(T)
that spans all the vertices of {x, y} [(T \ P) and has at most 2✏�2.5 joining
vertices with P . are constants.

x y

Figure 16.4: The output subgraph spans all vertices of P spanned by the input
tree, and also spans x and y, but the output subgraph has fewer joining vertices
with P .

204CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

16.6 Structure of Steiner tree within bricks

Lemma 16.6.1. The counterclockwise boundary of a brick B equals WB � SB �
EB � NB, where

1. SB is 1-short in B, and every proper subpath of NB is (1 + ✏)-short in B.

2. SB = S
1

� S
1

� · · · � S where, for each vertex x of Si[·, ·),

length(Si[·, x])  ✏ dist(x, NB) (16.2)

Note that some of the paths Si might be empty.

Theorem 16.6.2 (Structural Property of Bricks). Let B be a plane graph with
boundary N [E [S [W , satisfying the brick properties of Lemma 16.6.1. Let
F be a set of edges of B. There is a forest F̃ of B with the following properties:

F1) If two vertices of the boundary of B are connected in F then they are
connected in F̃ .

F2) The number of joining vertices of F̃ with N and with S is at most 4( +
1)✏�2.5.

F3) length(F̃)  (1 + 5✏)(length(F) + length(E) + length(W)).

16.6.1 Paths ¯P0, . . . , ¯P

We now present the proof of the theorem. We refer to N as north, etc. We
define P to be the eastern boundary E of the brick. We define P̄ = P. We
inductively define P̄�1

, P̄�2

, . . . , P̄
0

as follows. (The definition is illustrated
in Figure 16.5.) For i =  � 1,  � 2, . . . , 0, if F [W has an Si-to-north path
that does not intersect P̄i+1

, P̄i+2

, . . . , P̄, let Pi be the rightmost such path,
and define P̄i = Si[·, start(Pi)] � Pi. If there is no such path, define P̄i = ;.

Let P be a nontrivial P̄i-to-north path or P̄i-to-south path in F . We call P
a sprit of P̄I if P � start(P) avoids P̄i, . . . , P̄. It is a northern sprit if end(P)
belongs to N and a southern sprit if end(P) belongs to S.

Because Pi is rightmost, we obtain the following lemma, whose proof is
outlined in Figure 16.6.

Lemma 16.6.3 (Sprit Lemma). For i = 0, 1, . . . , ,

• if P is a northern sprit of P̄i then end(P) is strictly left of end(Pi) on N ,
and

• if P is a southern sprit of P̄i then end(P) is strictly left of start(Pi) on S,
and

Inequality 16.2 implies that, for i = 0, . . . ,  � 1,

length(P̄i)  (1 + ✏)length(Pi) (16.3)

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 205

Sκ-1Sκ-3 Sκ-2

Pκ-1

S!-1Sκ-3 Sκ-2

Pκ

Pκ-1

S!-1Sκ-3 Sκ-2

S!-1Sκ-3 Sκ-2

Pκ-3

S!-1Sκ-3 Sκ-2

Pκ-3

Pκ

Pκ

PκPκ-1

PκPκ-1

Figure 16.5: The top figure shows a fragment of a brick with P̄ defined as
the eastern boundary. The second figure shows P�1

, defined as the rightmost
south-to-north path that avoids P. The third figure shows P̄�, which is ob-
tained from P�1

by prepending the to-start(P) prefix of S�1

. There is no
south-to-north path that originates in S�2

and avoids P̄�1

, so P̄�2

is empty.
The fourth figure shows P�3

, defined as the rightmost south-to-north path that
does not intersect P�1

or P. The fifth figure shows P̄�3

, which is obtained
from P�3

by prepending a prefix of S�3

. Note that south-to-north paths
originating in this prefix become P̄�3

-to-north paths.

206CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

Pi+2

Si+2Si Si+1

Pi

P

Pi+2

Si+1Si

Pi

P

Pi+2

Si+2Si Si+1

Pi

P

Figure 16.6: Suppose F contains a path P from Pi to a southern vertex to
the right of start(Pi) (in the first and second figures) or from Pi to a northern
vertex to the right of end(Pi) (in the third figure). In the first and third figure,
the magenta contour indicates that Pi is not the rightmost Si-to-north path
avoiding P̄i+1

, . . . , P̄, a contradiction. In the second figure, end(P) belongs
to Si+1

. Ordinarily end(P) would therefore belong to P̄i+1

, but in this case
P̄i+1

= Pi+1

=. However, the magenta contour indicates that there is an Si+1

-
to-north path avoiding P̄i+2

, . . . , P̄, a contradiction.

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 207

Pκ

Sκ-1Sκ-3 Sκ-2

Pκ-3
Qκ-3

Qκ-1

Figure 16.7: The paths Q�1

and Q�3

are signified by the dashed lines.

16.6.2 The forest F 0 and paths Q0, . . . , Q

Let F 0 be a minimal subgraph of F [W [
S

i=0

P̄i that contains
S

i P̄i and
that preserves connectivity among vertices of the boundary of B. Since F 0 is a
subgraph of F [W [

S
i=0

P̄i, Inequality 16.3 implies that

length(F 0)  length(F [W [

[

i=0

P̄i)

 length(E) + length(W) + (1 + ✏)length(F)

For i = 0, . . . , � 1, if there is a path in F 0 from P̄i to P̄i+1

[P̄i+2

[· · ·[P̄

whose internal vertices are not in P̄i [· · · [P, let Qi be such a path, as shown
in Figure 16.7. Otherwise let Qi = ;.

Claim 16.6.4. Every internal vertex of Qi has degree two in F 0.

Proof. Assume for a contradiction that some internal vertex u of Qi has an
incident edge e not on Qi. By minimality of F 0, the edge e must be required to
preserve connectivity among vertices of the boundary of B. Let v be a boundary
vertex of B such that removing e separates u and v. Let P be the u-to-v path
in F 0.

If v is on P̄j for some j > i then u and v are connected via P̄j and a su�x
of Qi, a contradiction. Otherwise, a prefix of Qi together with P violates the
Sprit Lemma (Lemma 16.6.3).

16.6.3 The forest ˜F

The construction of F̃ is as follows. Each connected component K of F 0 �
S

i Qi

is replaced with a component K̃ that achieves at least K’s connectivity among
boundary vertices of B and endpoints of paths Qi. This ensures that K̃ =
S

K K̃ [
S

i Qi achieves the connectivity of F 0 among boundary vertices of B,
which is property F1 of Theorem 16.6.2.

For each component K, moreover, length(K̃)  (1 + 3✏ + ✏2)length(K).

208CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

Therefore

length(F̃) 
X

i

length(Qi) +
X

K

length(K̃)


X

i

length(Qi) + (1 + 3✏ + ✏2)
X

K

length(K)

 (1 + 3✏ + ✏2)length(F 0)

 (1 + 3✏ + ✏2)((1 + ✏)length(F) + length(E) + length(W))

which proves part F3 of the theorem, assuming ✏  1/5.
Our construction will ensure that there are at most  + 1 components K

for which K̃ has joining vertices with the boundary of B, and for each of these
components, K̃ has at most 4✏�2.5 joining vertices. Thus the total number of
joining vertices is 4( + 1)✏�2.5.

16.6.4 Type-1 and type-2 components

For each connected component K of F 0 �
S

i Qi, the construction of K̃ depends
on what kind of component K is. We say K is a type-1 component if the
boundary vertices in K are all internal vertices of S or all internal vertices of
N , and is a type-2 component otherwise.

For i = 0, . . . , , let Ki be the connected component of F 0 �
S

j Qj that

contains P̄i (if P̄i 6= ;).

Lemma 16.6.5. If K is a type-2 component then K = Ki for some i.

Proof. By minimality of F 0, every component of F 0 contains some boundary
vertices.

• Suppose K contains a vertex of E. Since P̄ = E and P̄ belongs to
F �

S

i Qi, K contains a vertex of S (namely start(P̄)) and a vertex of
N (namely end(P̄)).

• Suppose K contains a vertex of W . Recall that F 0 is a subgraph of F [
W [

S

i P̄i that preserves connectivity among vertices of the boundary. It
follows that K contains a vertex of S and a vertex of W .

• Suppose K does not contain a vertex of E and a vertex of W . Since K
is not a type-1 component, it must therefore contain a vertex of S and a
vertex of N .

K, therefore, contains a vertex of S and a vertex of N . Let P be a south-to-
north path in K, and let i be the integer such that start(P) belongs to Si[·, ·).
If start(P) belongs to Si[·, start(Pi)] then start(P) belongs to P̄i, so start(P)
belongs to Ki. If not, then, by choice of Pi, the rightmost P intersects P̄j for
some j > i, so start(P) belongs to Kj .

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 209

16.6.5 Construction of ˜K

First suppose K is of type 1. If its boundary vertices are in S, we let K̃ :=
Span0(S, K). If its boundary vertices are in N , we let K̃ := Span0(N, K). In
either case, K̃ has no joining vertices, and length(K̃)  (1 + ✏)length(K).

Now we consider type-2 components. By Lemma 16.6.5, K
0

, . . . , K are the
only type-2 components. For i = 0, . . . , , we obtain K̃i from Ki by

(a) separating Ki into two parts, KN
i and KS

i ,

(b) applying Span2 or Span1 to each part, and

(c) adding a subpath of Si[·, start(Pi)].

By Lemmas 16.5.3 and 16.5.4, the total number of joining vertices is at most
4✏�2.5, and the total length is at most (1+2✏+✏2)length(Ki)+length(Si[·, start(Pi)]),
which is in turn at most (1+3✏+✏2)length(Ki). These are the properties needed
in the analysis in Section 16.6.3.

16.6.6 Decomposition of K
i

into KN

i

and KS

i

For i = 0, . . . , , if P̄i 6= ;, let xi be the first vertex on P̄i such that there is
an xi-to-north sprit PN . If end(PN) were right of end(P̄i) on N then it would
violate the Sprit Lemma, so it is strictly left of end(P̄i) on N .

Lemma 16.6.6. For any vertex x of P̄i(xi, ·], there is no x-to-south sprit of Pi.

Proof. Let PN be an xi-to-north sprit. Suppose P is an x-to-south sprit. By
the Sprit Lemma, PN and P are both left of P̄i, so they cross, forming a cycle
with P̄i. This contradicts the minimality of F 0.

Lemma 16.6.7. If there is an integer j < i such that Qj connects to P̄i then
end(Qj) = xi.

Proof. The proof is illustrated in Figure 16.8. Combining Qj with the to-
start(Qj) prefix of Pj yields a southern spar of P̄i. Therefore, by Lemma 16.6.6,
end(Qj) is not strictly after xi on P̄i. Combining Qj with the from-start(Qj)
prefix of Pj yields a northern spar of P̄i. Therefore, by choice of xi, end(Qj) is
not strictly before xi on P̄i.

As illustrated in Figure 16.9, we decompose Ki into edge-disjoint subgraphs
KN

i and KS
i as follows. KN

i consists of the subpath P̄i[xi, ·] and paths between
this subpath and N . KS

i consists of the subpath P̄i[·, xi] and paths between
this subpath and S.

Our intention is to apply the procedure Span1 or Span2 to each of KN
i and

KS
i , as shown in Figure 16.10, obtaining edge-disjoint trees K̃N

i and K̃S
i , each

having at most 2✏�2.5 joining vertices with N and S, respectively. Because each
of these two trees contains xi, their union is connected.

There are two additional issues, however. First, consider the case, depicted
in Figure 16.11, in which the vertex xi is not on Pi but is on the subpath

210CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

PiPj
xi

Qj

PiPj
xiQj

Pj
Pi

xi

Qj

Figure 16.8: The first configuration is impossible since rev(Qj) connects Pi to
N (via Pj), which would contradict the choice of xi. The second and third
configurations are impossible since there is no way for an xi-to-N path to avoid
crossing Pj or Qj .

Si[·, start(Pi)] prepended to Pi to form P̄i. In this case, the tree T̃S
i is not

required to include the vertices of Si[xi, start(Pi)] other than xi. In this case,
therefore, we include this subpath in K̃i.

The second issue is this: if Qi 6= ;, we need the new tree K̃i to include
start(Qi). Fortunately, the procedure Span2 allows us to specify two vertices
to be spanned. The construction of K̃i is as follows. First we define K̃N

i and
K̃S

i :

• If Qi = ;, we define K̃N
i := Span1(N, KN

i , xi) and K̃S
i := Span1(S, KS

i , xi).

• If start(Qi) belongs to KN
i , we define K̃N

i := Span2(N, KN
i , xi, start(Qi))

and K̃S
i := Span1(S, KS

i , xi).

• Otherwise, we define K̃S
i := Span2(S, KS

i , xi, start(Qi)) and K̃N
i := Span1(N, KN

i , xi)

We then define K̃i to be the union of K̃N
i , K̃S

i , and Si[xi, start(Pi)]. The analysis
of length and number of joining vertices is as described in Section 16.6.5.

16.6.7 Span1

In this section, G is a planar embedded graph, P is an 1 + ✏-short path forming
part of the boundary of G, r is a vertex of G, and T is an r-rooted tree of G

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 211

Pixi xi

Ki Ki
N

xi

Ki
S

Figure 16.9: The component Ki is split at xi into the northern part, KN
i , and

the southern part, KS
i .

xi

Ki
N

xi

Ki
S

xi

Ki
S~

xi

Ki
S~

Figure 16.10: The northern subtree and the southern subtree are separately
simplified (to reduce their number of joining vertices) using Span1.

that intersects P only at leaves of T .
For a rooted subtree T 0 of T , every root-to-leaf path of T 0 ends on P , so

these paths are ordered according to the positions of the leaves along P . In
this section and the next, we are particularly interested in the leftmost and
rightmost root-to-leaf paths.

In this section, we give the proof of Lemma 16.5.3, which is paraphrased
here:

There is a procedure Span1(P, T, r) that returns a subgraph of T [P
that (a) has length at most (1+✏)length(T), (b) spans all the vertices
of {r} [(V (T) \ V (P)), and (c) has at most ✏�1.45 joining vertices
with P .

We start with a subprocedure.

Lemma 16.6.8. There is a subprocedure ReduceDegree(P, T, r) that, if the
root r of T has more than two children, returns a subpath P 0 of P and an r-to-P 0

path Q consisting of edges of T such that that

• P 0 [Q spans {r} [(V (T 0) \ V (P)), and

212CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

Pi

xi

Ki

Figure 16.11: When xi does not belong to Pi, the tree TS
i does not include the

vertices of Si(xi, start(Pi)] so T̃S
i need not. In this case, therefore, we include

the subpath S[xi, start(Pi)] in T̃ .

r r
e1 e3e2

Figure 16.12: Replace the tree T with the minimal subpath of P that contains
all leaves of T , together with the path to P that starts at a middle child edge
of the root.

• length(P 0)  (1 + ✏)length(T � Q).

Proof. Let Q
1

and Q
3

denote, respectively, leftmost and rightmost root-to-leaf
paths in T , and let e

1

and e
3

be the first edge in, respectively Q
1

and Q
2

.
Because G is planar, P is on the boundary of G, and r has at least two children,
we have e

1

6= e
3

. Let e
2

be another child edge of r, and let Q
2

be the root-to-leaf
path in T that starts with e

2

.
The procedure returns the tree consisting of Q

2

and the minimal subpath of
P that contains all leaves of T . The only joining vertex is the end of Q

2

. Since
rev(Q

1

) � Q
3

is a start(P 0)-to-end(P 0) path and P is 1 + ✏-short, length(P 0) 
length(Q

1

) + length(Q
3

).

By repeated application of ReduceDegree, we obtain

Lemma 16.6.9. There is a subprocedure ReduceDegrees(P, T, r) that re-
turns a subtree T 0 of T and a collection of subpaths P

1

, . . . , Pk of P such that

• T 0 [
S

i Pi spans {r} [(V (T) \ V (P)) and

• length(
S

i Pi)  (1 + ✏)length(T � T 0)

Now we prove Lemma 16.5.3 by describing Span1(P, T, r). Let T 0 be the tree
derived from T in Lemma 16.6.9. Every vertex of T 0 has at most two children.
We will use an argument that requires that every nonleaf vertex has two children.
We therefore modify T 0 by splicing out each nonroot vertex with exactly one
child, merging the two incident edges into a single edge whose length is the sum

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 213

u

Figure 16.13: The edges in bold are the zig-zag edge.

of the lengths of the merged edges.
This will ensure that every nonleaf vertex (except possibly the root r) has two
children.

• If r has two children, we define T 00 to be the resulting modified tree. We
show how to replace T 00 with an r-rooted tree bT that satisfies properties (a)
through (c) of Lemma 16.5.3.

• If r has only one child, r0, we define T 00 to be the r0-rooted subtree, and ap-
ply the argument of Case 1 to obtain a replacement r0-rooted tree bT . Then
bT [{r-to-r0 path} satisfies properties (a) through (c) of Lemma 16.5.3.

Say that an edge uv of T 00 is a zig-zag edge if the two-step path from the
parent p(u) of u to u to v either goes from p(u) to a left child and from u
to a right child, or goes from p(u) to a right child and from u to a left child.
The above definition is inapplicable if u is the root of T 0. Therefore we (rather
arbitrarily) define the left edge of the root of T 00 to be a zig-zag edge.

As in breadth-first search, the level of a vertex is equal to the number of
edges traversed when going from the root of T 0 to the vertex. The level of an
edge is equal to the level of its endpoint that is closer to the root. For each level
i, let Li denote the total length of the zig-zag edges at level i.

Let k be a level to be determined later. The procedure obtains a tree bT from
T 00 as follows (see Figure 16.14). For each level-k vertex u, the procedure applies
a subprocedure similar to ReduceDegree: replace the u-rooted subtree of T 00

(which we denote T 00
u) with another u-rooted tree bTu consisting of

• the minimal subpath P 0 of P spanning the vertices of T 00
u \ P , and

• the u-to-P 0 path that includes u’s zig-zag child edge.

The construction ensures that bT spans all the vertices of V (T 00) \ V (P). More-
over, the number of joining vertices is 2k. We shall ensure that k  log� ✏�1,

214CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

level k

Figure 16.14: For each level-k vertex u, the subtree rooted at u is replaced with
the minimal subpath P 0 of P containing the leaves of that subtree, together
with a shortest u-to-P 0 path. The new subtrees are indicated in red.

where � = 1+

p
5

2

is the golden ratio. Hence the number of joining vertices is at
most ✏�1.45.

It remains to show that there is a choice of k for which length(bT)  (1 +
✏)length(T 00). The argument is illustrated in Figure 16.15. The length of the
path P 0 is not much longer than the path Q

1

through T 00
u between the endpoints

of P 0. The length of the shortest u-to-P 0 path is no longer than any u-to-P 0

path Q
2

in T 00
u . Thus

length(bTu)  length(Q
1

) + length(Q
2

) (16.4)

Since Q
1

and Q
2

are contained in T 00
u , we would like to argue that length(Q

1

)+
length(Q

2

)  length(T 00
u). However, that might not be true because Q

1

and Q
2

overlap.
We address this di�culty by selecting the path Q

2

carefully and by selecting
the level k carefully. As shown in Figure 16.15, we can select Q

2

so it shares
only one edge e with Q

1

. Moreover, in arguing that bTu is not much longer than
T 00
u , we can use the fact that there are many edges that belong to T 0

u but do not
belong to bTu, including in particular the dashed edges in Figure 16.15.

For each level-k vertex u, we choose the path Q
2

to be the path starting at
u that traverses the next two zig-zag edges and then continues to a leaf without
taking any more zig-zag edges. For example, if, as in Figure 16.15, u is a right
child of its parent, then Q

2

traverses u’s left child edge, then goes right and
continues going right until reaching a leaf.

The advantage of this choice of path is that, after the first two edges, Q
2

avoids all zig-zag edges. Note also that Q
1

also avoids all zig-zag edges except
for the child zig-zag child edge of u. Let e denote this edge. Since e is the only
edge common to Q

1

and Q
2

, and none of the zig-zag edges at levels k + 2 and

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 215

e
u

Q1

P'

Q2

level k

level k+3

level k+2

level k+1

Figure 16.15: We bound the length of the replacement tree bTu by the length of
the path Q

1

through the tree from its leftmost leaf to its rightmost leaf, plus
the length of the path Q

2

from the root to one of its leaves. We choose Q
2

to
first traverse two zig-zag edges and subsequently not traverse any zig-zag edges.
The dashed edges in the figure are zig-zag edges that are in neither Q

1

nor Q
2

.
The total length of these edges is a credit against the debit represented by the
edge e that appears in both Q

1

and Q
2

.

216CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

above belong to either Q
1

or Q
2

,

length(Q
1

) + length(Q
2

) + length(zig-zag edges at levels k + 2, k + 3, . . .)

 length(T 00
u) + length(e)

where we include here only zig-zag edges belonging to T 00
u .

We combine this inequality with Inequality 16.4, obtaining

length(bTu)+length(zig-zag edges at levels k+2, k+3, . . .)  length(T 00
u)+length(e)

(16.5)
Note that edge e is a level-k zig-zag edge. Now we sum 16.5 over all level-k
vertices u, obtaining

X

u

length(bTu) + Lk+2

+ Lk+3

+ · · · 
X

u

length(T 00
u) + Lk (16.6)

We add the lengths of edges at levels less than k to both sides. These edges
appear in both T 00 and bT , so we obtain

length(bT) + Lk+2

+ Lk+3

+ · · ·  length(T 00) + Lk (16.7)

Combining this inequality with the following claim completes the proof of prop-
erty (c).
Claim: There exists k  log� ✏�1 such that Lk  ✏ length(T 00) + Lk+2

+ Lk+3

+

· · · , where |phi = 1+

p
5

2

is the golden ratio
Let k

0

= blog� ✏�1c. Define F�2

, F�1

, F
0

, F
1

, F
2

, . . . , Fk0 by the recurrence

Fk0 = 1

Fk0�1

= 1

Fk = Fk+2

+ Fk+3

+ Fk+4

+ · · · + Fk0

The recurrence implies that Fk = Fk+1

+ Fk+2

for �2  k  k
0

� 2. Therefore
Fk � �k0�k�1, so in particular F�2

� �k0+1 > ✏�1.
Assume the claim is false. Then, for each integer 0  k  k

0

, Lk >
✏ length(T 00)Fk, so

L
0

+ L
1

+ L
2

+ · · · + Lk0 > ✏ length(T 00)(F
0

+ F
1

+ F
2

+ · · · + Fk0)

= ✏ length(T 00)(F�2

)

> ✏ length(T 00)(✏�1),

which is a contradiction. Thus the claim is true.

16.6.8 Span2

Again G is a planar embedded graph, P is an 1 + ✏-short path forming part of
the boundary of G, and T is an r-rooted tree of G that intersects P only at
leaves of T .

In this section, we give the proof of Lemma 16.5.4, which is reproduced here:

16.6. STRUCTURE OF STEINER TREE WITHIN BRICKS 217

There is a procedure Span2(·, ·, ·, ·) such that, for vertices x, y of K,
Span2(P, K, x, y) returns a subgraph of P [K of length at most
(1 + 2✏ + ✏2)length(T) that spans all the vertices of {x, y} [(K \ P)
and has at most 2✏�2.5 joining vertices with P , where c is a constant.

Let Q be the unique x-to-y path in T . Removing the edges of Q from T
breaks T into a forest consisting of trees rooted at vertices of Q with leaves on
P . Let r

1

, . . . , rk be the roots in order along Q and let T
1

, . . . , Tk be the trees.
If k < 2d✏�1e then obtain a tree bT from T by applying Span1 to each tree

Ti, replacing it with a tree bTi that has at most ✏�1.45 joining vertices. It follows
that bT has at most 2✏�2.45 joining vertices.

Assume therefore that k � 2d✏�1e. For j = 1, 2, . . . , d✏�1e, define f(j) =
k � d✏�1 + j, and define Lj = length(Tj) + length(Tf(j)). Let j⇤ = minarg jLj .
Then

Lj⇤  ✏ length(T
1

[T
2

[· · · [Tk) (16.8)

The transformations are illustrated in Figure 16.16. Write Q = Q
1

�Q
2

�Q
3

where start(Q
2

) = rj⇤ and end(Q
2

) = rf(j⇤). Let Q
4

be the leftmost root-to-leaf
path in Tj⇤ and let Q

5

be the rightmost root-to-leaf path in Tf(j⇤). Say a tree
Tj is a middle tree if j⇤  j  f(j⇤). As illustrated in Figure 16.16, we obtain
bT from T as follows:

1. Remove Q
2

and the middle trees, and add Q
4

, Q
5

, and the end(Q
4

)-to-
end(Q

5

) subpath P 0 of P .

2. Apply Span1 to each of the non-middle trees.

Since there are at most ✏�1 non-middle trees, and each is replaced with a tree
with at most ✏�1.45 joining vertices, there are at most ✏�2.45+2 joining vertices.
(The two come from Q

4

and Q
5

.)
The increase in length due to the second step is at most 1 + ✏ times the

length of the non-middle trees. Since P is 1 + ✏-short and rev(Q
4

) � Q
2

� Q
5

is
a start(P 0)-to-end(P 0) path,

length(P 0)  (1 + ✏)length(Q
4

) + length(Q
2

) + length(Q
5

) (16.9)

Since Q
4

is part of Tj⇤ and Q
5

is part of Tf(j⇤),

length(Q
4

) + length(Q
5

)  Lj⇤ (16.10)

The increase in length due to the first step is

length(P 0) + length(Q
4

) + length(Q
5

) � length(Q
2

) � length(middle trees)

 length(P 0) � length(Q
2

)

 (1 + ✏)[length(Q
4

) + length(Q
2

) + length(Q
5

)] � length(Q
2

)

 (1 + ✏)[length(Q
4

) + length(Q
5

)] + ✏ length(Q
2

)

 (1 + ✏)✏ length(T
1

[· · · [Tk) + ✏ length(Q
2

)

Hence the total increase is at most (1 + ✏)✏ + ✏ times the length of T .

218CHAPTER 16. APPROXIMATION SCHEMES FOR STEINER PROBLEMS

x y

P

Q

T1 T2 T3 T4 T5 T6 T7 T8

Tj* Tf(j*)

Q1 Q3Q2

Q4 Q5

P'

Figure 16.16: The original tree T is shown at the top. It consists of an x-to-
y path Q and trees T

1

, . . . , Tk rooted at vertices of Q. In the first step, the
subpath Q

2

and the middle trees are replaced by the paths Q
4

and Q
5

and the
subpath P 0 of P . In the second step, Span1 is applied to the non-middle trees.

