
Chapter 15

Approximation scheme for
the traveling salesman
problem

In this chapter we present a framework for obtaining approximation schemes.
Our primary example application is the traveling-salesman problem, but we
introduce the framework using a simpler problem.

15.1 Cutting into small pieces

We start by considering a simple problem for which Baker’s methodology does
not suffice.

Cut Into Small Pieces

• Input: a graph G with edge weights

• Output: a set S of edges such that each component of G− S has at most
three vertices

• Goal: minimize the weight of S

For a reason that will become apparent, we will focus on the unit-weight case,
where the goal is to minimize the cardinality of S. This problem (with “three”
replaced by a parameter) has been studied because of its application to net-
work epidemiology, under the name “deleting edges to restrict the size of an
epidemic.” Figure 15.1 shows an example.

If “three” is replaced by “two”, the problem is equivalent to finding a max-
imum matching, which is polynomial-time solvable. However, the case of three
(or any greater number) is NP-hard, even for planar graphs. Is there an ap-
proximation scheme?

193

194CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

Figure 15.1: The edges to be deleted (the edges of S) are indicated with dashed
lines, and the edges to remain are indicated with solid lines. Note that each
component of solid edges has at most three vertices.

15.1.1 First attempt

Let’s try to apply the methodology of Section 14.7. According to that method-
ology, the key is finding a decomposition of the graph into parts so that (1)
each part has small branchwidth, (2) a solution for the whole induces a solution
for each part (whole-to-parts), and (3) the union of solutions for the parts is a
solution for the whole (parts-to-whole).

The good news is that the whole-to-parts property holds for Cut Into
Small Pieces. The bad news is that a decomposition of a graph does not
ensure the parts-to-whole property.

Consider a decomposition such as that used in Section 14.7.5:

levels i+k+1 through i+k+k

levels i+1 through i+k

levels i+2k+1 through i+2k+k

Figure 15.2(a) shows a graph decomposed in this way, and Figure 15.2(b)

15.1. CUTTING INTO SMALL PIECES 195

(a) A graph divided into two parts (b) The two parts

(c) Optimal solutions for the two
parts

(d) The optimal solutions for the
parts in the context of the entire
graph

Figure 15.2: Failure of the parts-to-whole property

shows the resulting parts. Figure 15.2(c) shows an optimal solution for each
part. Note that when the solution edges are removed, each resulting component
has at most three vertices. However, as shown in Figure 15.2(d), when we restore
the edges removed to split the graph into parts, components are merged to form
new components of size greater than three. Thus the union of solutions for the
parts is not a feasible solution for the whole: the parts-to-whole property does
not hold.1 Recall that in every approximation scheme we have seen so far, the
solution for the whole is obtained by taking the union of the solutions for the
parts. Because this approach does not work for Cut Into Small Pieces, we
conclude that the approximation-scheme methodology of Chapter 14 does not
suffice for this problem.

15.1.2 Deletion Decomposition

When we divide the graph into parts, we must also take into account the edges
between the parts. Consider the following approach:

1. Decompose the input graph into vertex-disjoint subgraphs.

2. Find optimal solutions in each of the subgraphs.

3. Return the union of these solutions together with some of the edges be-
tween the subgraphs.

According to Baker’s methodology, the algorithm would consider some k dif-
ferent decompositions, each obtained by removing a different set Ei of edges

1In other forms of decomposition, the two parts share vertices and maybe even edges—but
the same issue would arise.

196CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

between the subgraphs. Because E0, . . . , Ek are disjoint, for at least one value
of i ∈ {0, . . . , k− 1}, the weight of Ei ∩OPT is at most 1/k times the weight of
OPT.

Unfortunately, this fact is irrelevant here. Even if somehow the algorithm
knew which edges of Ei belonged to OPT, including only those edges in the
solution in Step 3 would likely not lead to a feasible solution because the solu-
tions obtained in Step 2 for each of the subgraphs are not likely to match up
with the edges of OPT ∩ Ei to form a feasible solution for G. For example,
in Figure 15.2(d), unless all the edges of Ei are removed, a component of size
greater than three will result.

The analysis must allow for the possibility that all the edges of Ei must be
included in the algorithm’s output. Using the same averaging argument as was
used in analyzing Baker’s algorithm, we can ensure that there is one choice of i
for which the weight of Ei is at most 1/k times the weight of the entire graph.
Let us say that the algorithm selects this choice. Because of the whole-to-parts
property, the weight of the union of solutions to parts (as found in Step 2 is at
most the weight of OPT. This analysis therefore shows that the weight of the
algorithm’s solution is

weight(OPT) +
1

k
(weight of input graph)

For constant k, this does not suffice to ensure that the algorithm is an approx-
imation scheme; the weight of the input graph could greatly exceed the weight
of OPT.

Consider therefore the special case in which all edge weights are one, and
that furthermore the input graph is simple.

Lemma 15.1.1. For any connected strict graph with more than three vertices,
there is a partition of the edges into sets such that, for any solution S to Cut
Into Small Pieces, S contains at least one-third of the edges in each set.

Corollary 15.1.2. For any connected strict graph G with more than three ver-
tices, for any set S of edges whose removal results in components with at most
three vertices, |S| ≥ |E(G)|/3.

The corollary states that (in the case of a simple graph with unit weights)
the weight of the graph is at most three times the weight of OPT. Therefore
we can use k = d3/εe in the algorithm described above, and be guaranteed that
the weight of Ei be at most ε times the weight of OPT, and that therefore the
algorithm’s output solution is at most 1 + ε times the weight of OPT.

To facilitate stating the algorithm more formally, we first abstract the pro-
cedure for decomposing the input graph. Because the decomposition yields
vertex-disjoint subgraphs each having bounded branchwidth, the union of these
subgraphs has bounded branchwidth.

Lemma 15.1.3 (Deletion-Decomposition Lemma). There is a linear-time al-
gorithm that, for any positive integer k and planar graph G, outputs a k-part

15.2. THE TRAVELING SALESMAN PROBLEM 197

subpartition E0 ∪ · · · ∪Ek−1 of E(G) such that, for i = 0, . . . , k− 1, G−Ei has
branchwidth at most 2k.

We can now state more formally the approximation scheme for unit-weight
Cut Into Small Pieces in simple planar graphs. Assume the input graph
G0 has |V (G0)| > 3, for otherwise the empty set is the optimal solution.

1. For k = d3ε−1e, use the algorithm of the Deletion-Decomposition Lemma
to compute the k-part subpartition E0 ∪ · · · ∪ Ek−1 of E(G1). Let q =
minarg i|Ei|. Let G1 = G0 − Eq.

2. Find the optimal solution for G1.

3. Return the union of this solution and the edges of Eî.

Because E0, . . . , Ek−1 are disjoint,
∑
i |Ei| ≤ |E(G0)|. By averaging, there is

some integer q for which |Eq| ≤ (1/k)|E(G1)|. Corollary 15.1.2 implies that
|OPT| ≥ |E(G0)|/3. Because k = d3ε−1e, we infer that |Eq| ≤ ε|OPT|.

By the whole-to-parts property, the solution found in Step 2 has cardinality
at most |OPT|. Therefore the solution returned in Step 3 has cardinality at
most (1+ ε)|OPT|. This proves that the algorithm is an approximation scheme.

Problem 15.1. Prove Lemma 15.1.1.

Problem 15.2. Show that, for some constant c, there is a cwn algorithm for
Cut Into Small Pieces in graphs with branchwidth w.

It follows from the Deletion-Decomposition Lemma and Problem 15.2 that
the approximation scheme takes linear time.

It is crucial that weights are unit; the approximation analysis depends on
Corollary 15.1.2, which does not hold for arbitrary weights.

15.2 The traveling salesman problem

Next we study the most famous hard optimization problem in graphs, the trav-
eling salesman problem (TSP).

An undirected traveling-salesman tour in a graph is a closed walk of darts
that visits every vertex at least once:

198CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

Given a graph with edge-weights, the goal of the TSP is to find a traveling sales-
man tour of minimum weight. For now, we do not consider the corresponding
directed problem.

Historically, the TSP has been the focus of much research in combinatorial
optimization. Often when a new technique is introduced in the literature, it
is introduced in application to the TSP. Because planar graphs are useful in
modeling road networks, algorithmic insights about TSP in planar graphs can
be relevant to problems in mobility. We shall return to this point in the next
chapter.

We will see that the problem can be reformulated so as to remove the ordering
aspect of a solution. LetG be the input graph, and letW be a traveling-salesman
tour. We can almost interpret W as a subgraph of G0. We say “almost” because
an edge of G could occur multiple times in W . A multisubgraph of G is a graph
M obtained from G by replacing each edge of G by some number of copies of
that edge (with the same endpoints). That is, each edge of G can belong to M
with any multiplicity. The degree of a vertex of G with respect to M is the sum
of multiplicities in M of edges incident to the vertex.

Lemma 15.2.1 (Euler Lemma).

1. For any graph G and closed walk W in G, let M be the multisubgraph in
which an edge’s multiplicity is its multiplicity in W . Then the edges of
(G,M) are connected and every vertex has even degree.

15.3. APPROXIMATING UNIT-WEIGHT EULERIAN BISUBGRAPH199

2. There is a linear-time algorithm that, for any multisubgraph M such that
the edges are connected and every vertex has even degree, finds a walk W
in which each edge’s multiplicity is the same as in M .

We say that a multisubgraph M of G is Eulerian if it is connected and every
vertex of G has even degree with respect to M .

It follows from the Euler Lemma that the problem of finding a minimum-
weight tour visiting a given set S of vertices is equivalent to the problem of
finding a minimum-weight Eulerian multisubgraph M incident to every vertex
in S.

Moreover, consider any Eulerian multisubgraph M . If the multiplicity in
M of some edge e is k where k is greater than two, changing the multiplicity
to k mod 2 also results in an Eulerian multisubgraph incident to the same set
of vertices. Thus in addressing the minimum-weight Eulerian problem, we can
restrict attention to multisubgraphs in which the maximum multiplicity is two.
We call such a multisubgraph a bisubgraph. Thus the TSP is equivalent to the
problem of finding a minimum-weight Eulerian bisubgraph. We refer to this
problem as Eulerian Bisubgraph.

15.3 Approximating unit-weight Eulerian Bisub-
graph

One might hope that Eulerian Bisubgraph is amenable to the approximation-
scheme methodology described in Chapter 14. In particular, consider the de-
composition used in Section 14.7.3 for Vertex Cover:

levels q through q+k

levels q+k through q+2k

levels q+2k through q+3k

The problem Eulerian Bisubgraph satisfies the parts-to-whole property
with respect to this decomposition. Unfortunately, it does not satisfy the whole-
to-parts property. The union of minimum-weight Eulerian bisubgraphs of the
parts could be far more expensive than a minimum-weight Eulerian bisubgraph
of the whole. This means that none of the decompositions we considered in
Chapter 14 will work; the methodology of that chapter is not applicable to
Eulerian Bisubgraph.

Instead, recall our approximation algorithm for the unit-weight version of
Cut Into Small Pieces. It uses a method we call approximation through
deletion decomposition, which we reformulate as follows. Given the input graph
G,

200CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

• Obtain a subpartition of the edges into k parts so that deleting any part
results in a graph of branchwidth at most 2k. Let S be the part of smallest
weight.

• Find an optimal solution in G− S.

• Add a multisubset of the edges of S to the solution for G− S to obtain a
solution for G.

The goal of Cut into Small Pieces is to select edges to disconnect the input
graph, which is why deletion of edges makes sense. The goal of Eulerian
Bisubgraph is, loosely speaking, to select edges to connect the graph, which
suggests that edge contraction might be more suitable. Consider the following
approach, which is called approximation through contraction decomposition. Let
G be the (planar) input graph.

• Reduce width: Obtain a subpartition of the edges of G into k parts so
that contracting any part results in a graph of branchwidth at most 2k.
Let S be the part of smallest weight.

• Solve: Find an optimal solution in G/S.

• Lift: Add a multisubset of the edges of S to the solution for G/S to
obtain a solution for G.

Because edge contraction is the dual of edge deletion, applying approximation
through contraction decomposition to a graph G is essentially the same as ap-
plying approximation through deletion decomposition to the dual of G. For the
Reduce width step, we use the analogue of the Deletion-Decomposition Lemma
(Lemma 15.1.3):

Lemma 15.3.1 (Contraction-Decomposition Lemma). There is a linear-time
algorithm that, for any positive integer k and planar graph G, outputs a k-part
subpartition E0 ∪ · · · ∪ Ek−1 of E(G) such that, for i = 0, . . . , k − 1, G/Ei has
branchwidth at most 2k + 1 (and Ei contains no cycles).

The proof is discussed in Section ??.
The other steps of approximation through contraction decomposition are spe-

cific to the optimization problem being addressed. In addressing TSP, the Solve
step (discussed in Section ??) consists in finding a minimum-weight Eulerian
bisubgraph of a graph of small branchwidth. The Lift step (discussed in Sec-
tion 15.8) consists in considering each compressed edge in turn, and incorporate
zero, one, or two copies of it into the solution, whichever is needed to keep the
solution Eulerian.

Consider the running time. The Reduce width step takes linear time regard-
less of the optimization problem addressed. In addressing TSP, the Lift step
takes linear time, and the Solve step takes at most cwn time for some constant
c where w is the branchwidth. Thus for any ε > 0 the overall algorithm takes
linear time if the width w can be bounded by a constant depending on ε.

15.4. BEYOND UNIT-WEIGHT GRAPHS: A SPARSIFIER 201

Consider the approximation analysis. We follow the pattern used in analyz-
ing the algorithm for Cut into Small Pieces. In the Reduce width step, the
part S of smallest weight has weight at most 1/k times the total weight of the
graph. For now, let us restrict attention to the unit-weight problem. We can
assume without loss of generality that the input graph G is strict. By sparsity,
therefore, |E(G)| ≤ 3|V (G)|. We choose k = d6ε−1e, so |S| ≤ 1

2ε|V (G)|. There-
fore the weight of the multisubset of edges added in the Lift step is at most
ε|V (G)|. On the other hand, in any Eulerian bisubgraph each vertex has degree
at least two, so the size of any Eulerian bisubgraph of G is at least |V (G)|.
Therefore the weight of edges added in the Lift step is at most ε times the op-
timal value. The optimal value for G/S is no more than the optimal value for
G, so the weight of the solution found in the Solve step is at most the optimal
value. Thus the algorithm outputs a solution whose weight is at most 1 + ε
times the optimal value. The algorithm is an approximation scheme.

Returning to the running time, the width of G/S is at most 2k + 1, which
is 2d6/εe+ 1. Thus the Solve step takes at most c2d6/εe+1n time, so the overall
algorithm takes linear time when ε is considered a constant.

15.4 Beyond unit-weight graphs: a sparsifier

The algorithm of Section 15.3 is an approximation scheme only for unit-weight
planar graphs. The approximation analysis of that algorithm requires that k be
a constant such that a 1/k fraction of the weight of the input graph is a lower
bound on the weight of the optimal solution. For arbitrary-weight graphs, there
is no such constant k.

Fortunately, there is an algorithm we can use to thin out the input graph
before applying the algorithm of Section 15.3.

Let P be an optimization problem, e.g. TSP, and let OPT(G,w(·)) be the
optimal value for an edge-weight graph G. An (α, β)-sparsifier for P is an
algorithm that, given G, outputs a subgraph H such that

• OPT(H) ≤ αOPT(G) and

• the weight of H is at most βOPT(G).

In Section 15.9, we show that, for any ε > 0, there is a linear-time (1 + ε, 1 +
2/ε)-sparsifier for TSP. We therefore obtain a linear-time approximation scheme
for TSP in planar graphs with edge weights.

The same approach can be used to address a variety of optimization prob-
lems involving selecting a subgraph or bisubgraph to achieve connectivity. For
example, consider the Steiner tree problem. The input is a graph with edge-
weights and a subset S of vertices; the output is a subgraph in which S is
connected; the goal is to minimize the weight of the subgraph. The approach
outlined for TSP can be adapted to achieve an O(n log n) approximation scheme
for Steiner Tree in planar graphs.

In Chapter 16, we show how the approach can be adapted to a variant of
TSP, Steiner TSP, in which the input specifies a set S of vertices that must

202CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

be visited by the tour (the tour can travel through other vertices as well). In
Chapter 17, we show how to address Prize-Collecting Steiner TSP, in
which the input additionally includes a function assigning a cost to each vertex
in S; the output is a tour visiting a subset of the vertices in S (and some other
vertices); and the goal is to to minimize the weight of the tour plus the cost of
the vertices not visited.

In each case, the algorithm has the following form:

• Sparsify: Select a subgraphG1 of the input graphG0 such that OPT(G1) ≤
(1 + ε)OPT(G0) and the weight of G1 is at most β times OPT(G0), where
β is a constant.

• Compress: Obtain a subpartition of the edges of G1 into k parts such that
compressing any part results in a graph of branchwidth at most 2k. Let
S be the part of smallest weight.

• Solve: Find an optimal solution in G1/S.

• Lift: Transform the solution for G1/S into a solution for G0.

The Compress step is an application of the Compression-Decomposition Lemma.
The Solve step involves a dynamic program of the kind we have by now seen
many times. This step obviously depends on the problem being addressed but is
generally straightforward. Similarly the Lift step is generally straightforward.
The Sparsify step, on the other hand, has often required the development of
new techniques. Chapters 16 and 17 outline two such techniques.

For problems that involve selecting edges to remove in order to reduce con-
nectivity, the approach does not apply directly:

• Deletion of edges in the Sparsify step only reduces the OPT, so sparsifi-
cation does not make sense;

• Compression of edges in the Compress step can greatly increase OPT, so
there is no way that the solution found in the Solve step can be lifted to
obtain an approximately optimal solution for the input graph.

However, consider applying the approach to the dual of the graph, or, equiva-
lently, swapping edge deletion with edge compression:

• Dual Sparsify: Obtain G1 from the input graph G0 by contracting a set
of edges chosen so that OPT(G1) ≤ (1 + ε)OPT(G0) and the weight of G1

is at most β(n) times OPT(G0).

• Delete Obtain a subpartition of the edges of G1 into k parts such that
deleting any part results in a graph of branchwidth at most 2k. Let S be
the part of smallest weight.

• Solve: Find an optimal solution in G1 − S.

• Lift: Transform the solution for G1 − S into a solution for G0.

15.5. COMPRESSION DECOMPOSITION AND CONTRACTION DECOMPOSITION203

This approach has been used, e.g. to obtain a kind of approximation scheme
for Graph Bisection; in the Dual Sparsify step, the weight of G1 is O(log n)
times OPT(G0) where n is the size of G0. The Delete, Solve, and Lift steps
correspond to the steps of our approximation scheme for unit-weight Cut into
Small Pieces. For that problem, no dual sparsification step is known, so the
approach does not yield an approximation scheme for Cut into Small Pieces
with arbitrary weights.

Finally, putting the pieces together, the algorithm is as follows:

1. Find a spanner G for TSP in the input graph G0.

2. Find disjoint sets E1, . . . , Ek such that, for any i, G/Ei has branchwidth
at most 2k.

3. Let i∗ = minarg iweight(Ei).

4. For each connected component of G/Ei∗ , find a minimum-weight tour.

5. Lift the union of the tours to G by incorporating at most two copies of
each edge of Ei∗ .

Define the parameter k by k = 2g(ε)ε−1 where c is the constant in Inequality ??.
Then the weight of the solution obtained in Step 5 is at most

OPT(G/Ei∗) + 2 weight(Ei∗) ≤ OPT(G) + 2
1

k
weight(G)

≤ (1 + ε)OPT(G0) + 2
1

2cε−1
cOPT(G0)

≤ (1 + ε)OPT(G0) + εOPT(G0)

≤ (1 + 2ε)OPT(G0)

15.5 Compression decomposition and contrac-
tion decomposition

We consider how to find the sets of Step 1.

Lemma 15.5.1 (Compression-Decomposition). For any positive integer k and
planar graph G, there is a k-part subpartition E1 ∪ · · · ∪Ek of E(G) such that,
for i = 1, . . . , k, the graph obtained from G by compressing Ei has branchwidth
at most 2k.

Proof. We adapt the procedure used for multiterminal cut in Section ??, appy-
ing it to the dual G∗ of G.

Execute breadth-first search on G∗. For i = 0, 1 . . . , k, let Ei be the
set of edges of G∗ whose levels are congruent mod k to i.

204CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

The procedure above separates G∗ into connected components each having the
form

G∗[V ∗`+1 ∪ V ∗`+2 ∪ · · · ∪ V ∗`+k]

where V ∗` is the set of vertices of Gj of level `. By the BFS-Branchwidth Lemma
(Lemma 14.7.1), each such connected component has branchwidth at most 2k.

Deleting edges from the dual graph G∗ corresponds to compressing these
edges in the primal graph G. This shows that G/Ei has branchwidth at most
2k.

Recall that compression differs from contraction on self-loops (cut-edges) in
the dual. On such edges, compression can disconnect a graph. Since this is
sometimes undesirable, we show that such compressions can be avoided.

Lemma 15.5.2 (Contraction-Decomposition Lemma). For any positive integer
k and planar graph G, there is a k-part subpartition A1 ∪ · · · ∪ Ak of E(G)
such that, for i = 1, . . . , k, the graph obtained from G by contracting Ai has
branchwidth at most 2k + 1.

Proof. Let E1∪· · ·∪Ek be the subpartition of E(G) given by the Compression-
Decomposition Lemma. Fix a value of i. Initialize G′ := G. For each edge e
of Ei (in arbitrary order), if e is not currently a self-loop of G′ then contract it
(which in this case is the same as compressing it). Let Ai be the set of edges
contracted, and let Bi be the set of edges of Ei that remain in G′.

Consider an edge e ∈ Bi (so e is a self-loop). For edges e1, e2 ∈ E(G′), if e1
is enclosed by e and e2 is not enclosed, every e1-to-e2 path includes the common
endpoint of e, which shows that e1 and e2 are not in the same biconnected com-
ponent of G′. Therefore, in view of the discussion in Section 4.6.1, compressing
e exactly preserves all biconnected components of G′ except that it removes
the singleton biconnected component consisting of e. By Lemma 15.5.1, each
biconnected component of G/Ei has branchwidth at most 2k, so the same holds
for each biconnected component of G/Ai. By Lemma 14.5.3, therefore, G/Ai
has branchwidth at most 2k + 1.

15.6 The framework

The approach described in Section ?? can be used for a variety of optimization
problems. In this section, we outline a general framework.

Let G0 be the input graph, and let weight(·) be an assignment of weights to
the edges. For any graph G such that E(G) ⊂ E(G0), we denote by OPT(G)
the optimum value of the optimization problem on graph G.

An algorithm in this framework can take two forms that are exactly dual to
each other. We start by presenting the form that is applicable to the traveling-
salesman problem (TSP). This is applicable to minimization problems (such as
TSP) that satisfy the following condition:

15.6. THE FRAMEWORK 205

Contraction-Monotonicity: Contracting edges cannot increase
the optimum value.

Let ε > 0 be an error parameter.

Spanner step: Let G1 be a graph obtained from G0 by edge-deletions such
that

1. weight(G1) ≤ g(ε)OPT(Gin), and

2. OPT(G1) ≤ (1 + ε)OPT(Gin)

where g(ε) is some function of ε. 5

Thinning step: Apply the Contraction-Decomposition Lemma toG1 to obtain
a subpartition A1 ∪ · · · ∪Ak of the edges, where k = ε g(ε). Let Aq be the
part of smallest weight. Let G2 = G1/Aq.

Branchwidth step: Find the optimal solution in G2, using the fact that G2

has branchwidth at most 2k + 1.

Lifting step: Convert the optimal solution found in the previous step to a
solution for G1 by incorporating some of the edges of Aq, increasing the
weight by at most cweight(Aq), where c is a constant.

Assume for now that these steps can be carried out for a particular opti-
mization problem. We assume that the Lifting step increases the weight by at
most cweight(Aq), so

weight of the output solution

≤ OPT(G2) + cweight(Aq)

≤ OPT(G1) + cweight(Aq) by Contraction-Monotonicity

≤ (1 + ε)OPT(G0) + cweight(Aq) by Property 2 of the Spanner step

≤ (1 + ε)OPT(G0) + c · 1

k
weight(G1)by an averaging argument in the Thinning step

≤ (1 + ε)OPT(G0) + c · 1

k
g(ε)OPT(G0) by Property 1 of the Spanner step

≤ (1 + ε)OPT(G0) + c εOPT(G0) by choice of k

≤ (1 + (c+ 1)ε)OPT(G0)

Thus the output solution is approximately optimal.
As described in Section ??, for TSP in unit-length graphs, the Spanner step

need only delete parallel edges and self-loops, for then weight(G1) ≤ 3OPT(G0)
and OPT(G1) = OPT(G0). For this problem, we set k = 3ε−1. The constant c
in the Lifting step is 2, so the algorithm returns a tour of length 1 + 2ε times
optimum.

For TSP with arbitrary nonnegative lengths, we show in Section 15.9 how
to carry out the Spanner step with g(ε) = 2ε−1 + 1, so we set k = 2ε−2 + ε−1.

206CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

Again the constant c is 2, so the algorithm returns a tour of length 1 + 3ε times
optimal.

The running time is dominated by the Branchwidth step. A straightforward
algorithm for TSP in an n-vertex graph of branchwidth w takes time 2O(w logw)n.

15.6.1 Dual framework

Compare the approach proposed for TSP to that proposed for multiterminal
cut. They are really just duals of each other. The analogue of Contraction-
Monotonicity that applies to multiterminal cut is:

Deletion-Monotonicity: Deleting edges cannot increase the opti-
mum value.

In the dual form of the framework, the spanner step contracts edges, whereas
the thinning step uses the Deletion-Decomposition Lemma to delete edges.

15.7 Properties of tours

In this section, we outline some properties of tours that help us in the Branch-
width step and the Lifting step.

Lemma 15.7.1. For any walk W in a graph, there is a walk W ′ that visits the
same vertices as W , such that every edge used by W ′ is used by W , and occurs
at most twice in W ′.

Proof. Let W be a walk in G, and suppose some dart d occurs at least twice in
W . Write W = W1 d W2 d. Then W1 rev(W2) is a walk of G that visits the
same vertices as W but uses the dart fewer times.

Repeating this step yields the lemma.

Lemma 15.7.1 shows that, in seeking the minimum-length closed walk vis-
iting a given set of vertices, we can restrict ourselves to considering walks in
which each edge occurs at most twice.

Proposition 15.7.2. For any tour in a planar graph, there exists a tour that
visits the same vertices and comprises the same darts in the same multiplicities,
and does not cross itself.

Proof. Suppose Ŵ = W1 a W b W2 c W d is a closed walk where c W d forms
a crossing configuration with a W b. Then d W1 a rev(c W2 b) rev(W) W is a
closed walk visiting the same nodes and comprising the same darts in the same
multiplicities, and with one fewer crossing configurations.

15.7. PROPERTIES OF TOURS 207

b

c

d

c’

d’

a

Figure 15.3: The light walk forms a crossing configuration with the bold walk.

208CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

Proposition 15.7.2 shows that we can restrict our attention to non-self-
crossing walks.

15.8 Lifting for TSP

The Lifting step is supposed to start with a solution to TSP for the contracted
graph G1/Aq, and produce a solution for the uncontracted graph G1. We refor-
mulate this, based on Section15.7, as starting with an Eulerian bi-subgraph for
G1/Aq and producing an Eulerian bi-subgraph for G1. The procedure, Lift-
Many simply considers each contracted edge in turn, uncontracts it, and incor-
porates one or two copies of it into the solution.

Each iteration is carried out by a procedure LiftOne(G, e,B) that, given
an Eulerian bisubgraph B of G/{e}, returns an Eulerian bisubgraph B′ of G
such that B′ − {e} = B. (See Figure 15.4.) We use the notation B ∪ {e} ∪ {e}
to indicate the multiset obtained from B by adding two copies of e.

def LiftOne(G, e,B):
if the endpoints of e in G have odd degree in B

return B ∪ {e}
return B ∪ {e} ∪ {e}

def LiftMany(G,S,B):
if S = ∅
return B
let e be an edge of S

return LiftOne(G, e,LiftMany(G/{e}, S − {e}, B))

Lemma 15.8.1 (Correctness of LiftOne). If B is an Eulerian bisubgraph
of G/{e} and e is not a self-loop then LiftOne(G, e,B) returns an Eulerian
bisubgraph of G.

Proof. Since B is an Eulerian bisubgraph of G/{e}, it must contain at least one
edge incident to at least one endpoint of e in G. Therefore B∪{e} connects each
connected component of G. Since in G/{e} the degree in B of each vertex is
even, in G every vertex has even degree in B except possibly the endpoints of e.
If even the endpoints have even degree then B ∪ {e} is an Eulerian bisubgraph
of G. If not, then both endpoints must have odd degree in B since the sum
of their degrees is the degree of the vertex resulting from contracting e. Hence
B ∪ {e} ∪ {e} is an Eulerian bisubgraph.

15.9 Spanner

Theorem 15.9.1. There is a linear-time algorithm that, given a planar graph
G0 with edge-weights and any ε > 0, outputs an edge subgraph G such that

15.9. SPANNER 209

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���

���
���
���
���
������
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
����
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

Figure 15.4: Examples of lifting. The Eulerian bisubgraph is indicated with
light lines. In the top diagram, only one copy of the formerly compressed edge
(the bold line) must be incorporated. In the second diagram, no copies are
needed. In the third diagram, two copies are needed.

210CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

A1: weight(G) ≤ (1 + 2ε−1)MST (G0), where MST (G0) is the weight of the
minimum spanning tree of G0, and

A2: for every pair of vertices u and v,

minimum weight of a u-to-v path in G (15.1)

≤ (1 + ε) ·minimum weight of a u-to-v path in G0

Lemma 15.9.2. Properties A1 and A2 imply Properties S1 and S2 of Section ??
with ρε = 1 + 2ε−1.

Proof. Because a tour includes a spanning tree, MST (G) ≤ OPT(G). Hence
Property A1 implies that Property S1 of Section ?? is achieved with ρε =
1 + 2ε−1.

Now we show that Property A2 implies Property S2, i.e. that OPT(G) ≤
(1 + ε0)OPT(G0). (This argument was used in [?].) Let T0 be an optimal tour
of G0. For each edge uv of T0 that is not in G, there is a u-to-v path in G of
weight at most (1 + ε)weight(uv); replace uv in T0 with that path. The result
of all the replacements is a tour T1 whose weight is at most 1 + ε times that of
T0. This shows OPT(G) ≤ (1 + ε) OPT(G0).

The algorithm of Theorem 15.9.1 is as follows.

define spanner(G0, ε):
let x[·] be an array of numbers, indexed by edges
find a minimum spanning tree T of G0

assign x[e] := weight(e) for each edge e of T
initialize S := {edges of T}
let T ∗ be the dual tree, rooted at the infinite face
for each edge e of T ∗, in order from leaves to root

let fe be the face of G0 whose parent edge in T ∗ is e
let e=e0, e1, . . . , es be the sequence of edges comprising fe
xomit :=

∑s
i=1 x[ei]

if xomit > (1 + ε)weight(e)
then add e to S and assign x[e] := weight(e)
else assign x[e] := xomit

return S

As we saw in Chapter 4, the minimum spanning tree of G0 can be found in
linear time.

Now we address correctness of the procedure. Say an edge e is accepted when
e is assigned to S, and rejected if e is considered but not assigned to S.

Lemma 15.9.3. In the for-loop iteration in which e is considered, for every
other edge ei of fe, x[ei] has been assigned a number.

Proof. The face fe has only one parent edge in T ∗, and it is e. For every other
edge ei of fe, either ei belongs to T or ei is a child edge of fe in T ∗.

15.9. SPANNER 211

e3

e5 e4

e

e1

e2

fe

Figure 15.5: Diagram showing part of dual tree (in light edges) and primal tree
(in dark edges) and primal nontree edges (dashed): e2 and e4 are child edges of
e in the dual tree. The face fe is indicated.

212CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

For any edge e of G0 not in T ,

• let Ĝe denote the subgraph of G0 consisting of accepted edges together
with e,

• let f̂e denote the face of Ĝe that contains e and encloses fe,

• let Ŵe denote the walk formed by the sequence of edges comprising f̂e not
including e itself, and

• let Pe =

{
e if e is accepted

Ŵe otherwise

Note that each of Ŵe and Pe has the same endpoints as e. For an edge e of T ,
define Pe = e. The basic argument of the following lemma comes from [?].

Lemma 15.9.4. For any edge e of G0, not in T ,

1. every edge of f̂e is either in T or is a descendant of e in T ∗, and

2. Ŵe = Pe1 · · · Pes , where e1 . . . es is the walk consisting of the edges
comprising fe other than e.

Proof. by induction. Consider the case in which e is a leaf-edge of T ∗. Let f be
the corresponding leaf-node in G∗0. Because f is a leaf, the only incident edge
that is in T ∗ is e itself, so e1, . . . , es belong to T . All these edges are accepted,
proving Part 1. To prove Part 2, note that We = e1 · · · es and that Pei = ei
for i = 1, . . . , s. Thus the lemma holds for e.

Consider the case where e is not a leaf. Let Ĝe+ be the subgraph of G0

consisting of accepted edges together with e, e1, . . . , es. For each ei, recall that
f̂ei is the face of Ĝei that contains ei and encloses fei . We claim that f̂ei is also
a face of Ĝe+. To prove the claim, note that Ĝei can be obtained from Ĝe+ by
deleting a subset of {e, e1, . . . , es}− {ei}. None of these edges are edges of T or
descendants in T ∗ of ei, so, by Part 1 of the inductive hypothesis, none belongs
to f̂ei .

Note that Ĝe can be obtained from Ĝe+ by deleting those edges among
e1, . . . , es that are rejected. By the claim, each such deletion replaces a rejected
edge ei in fe with the walk Ŵei . This together with the definition of Pei proves
Part 2. By Part 1 of the inductive hypothesis, every edge in each Ŵei is an edge
of T or a descendant of ei in T and hence a descendant of e as well. This proves
Part 1.

Lemma 15.9.5. In the for-loop iteration that considers e,

• the value assigned to xomit is weight(Ŵe), and

• the value assigned to x[e] is weight(Pe).

Proof. The proof is by induction. By Lemma 15.9.3, the edges e1, . . . , es are
considered before e. By the inductive hypothesis, x[ei] = weight(Pe). By
Lemma 15.9.4, weight(Ŵe) =

∑s
i=1 x[ei], which proves the first statement. The

second statement follows by definition of Pe.

15.9. SPANNER 213

Corollary 15.9.6. For each edge e, weight(Pe) ≤ (1 + ε)weight(e).

Proof. If e is accepted, Pe = e so the statement holds trivially. Suppose e is
rejected. By the conditional in the algorithm, in the iteration considering e,
the value assigned to xomit was at most (1 + ε)weight(e). By the first part of
Lemma 15.9.5, weight(Ŵe) and therefore weight(Pe) are at most (1+ε)weight(e).

Corollary 15.9.7. The graph of accepted edges satisfies Property A2.

Proof. For any pair of vertices u and v, let P be the shortest u-to-v path in G0.
For each edge e of P ,there is a walk Pe consisting of accepted edges between the
endpoints of e. By Corollary 15.9.6, weight(Pe) ≤ (1 + ε)weight(e). Replacing
each edge e of P with Pe therefore yields a walk of weight at most

∑
e∈P (1 +

ε)weight(e), which is at most (1 + ε)weight(P).

Lemma 15.9.8. At any time during the algorithm’s execution, the weight of
the infinite face in the graph consisting of accepted edges is at most

2 ·MST (G0)− ε · weight(accepted edges not in T)

Proof. The proof is by induction. Before the for-loop commences, the graph of
accepted edges is T , the minimum spanning tree of G0. Hence the weight of
the infinite face is exactly 2 ·MST (G0), so the lemma’s statement holds for this
time. Consider a for-loop iteration, and let e be the edge being considered. If e
is not accepted, there is no change to the set of accepted edges, so the lemma’s
statement continues to hold.

Suppose e is accepted. Let Gafter be the subgraph consisting of edges ac-
cepted so far, and let Gbefore = Gafter − {e}. Note that Gafter can be obtained
from Ĝe by deleting edges that will be accepted in the future. By the leaves-to-
root ordering, none of the deleted edges are descendants of e in T ∗. By Part 1
of Lemma 15.9.4, therefore, f̂e is a face of Gafter. Let g be the other face of
Gafter that contains e.

We claim that g is the infinite face of Gafter. To prove the claim, note
that Gafter can be obtained from G0 by deleting edges that have already been
rejected and edges not yet considered. By the leaves-to-root ordering, e’s proper
ancestors in T ∗ have not yet been considered, so they are among the edges
deleted. These deletions are contractions in the dual. The root of T ∗ is the
infinite face, so the contractions result in g being the infinite face.

Note that Gbefore can be obtained from Gafter by deleting e. This deletion
replaces e in the face g with Ŵe. This shows that

weight of infinite face in Gbefore − weight of infinite face in Gafter

= weight(Ŵe)− weight(e)

> (1 + ε)weight(e)− weight(e) because e was accepted

= ε · weight(e)

which shows that the lemma’s statement continues to hold.

214CHAPTER 15. APPROXIMATION SCHEME FOR THE TRAVELING SALESMAN PROBLEM

Corollary 15.9.9. The graph G of accepted edges satisfies Property A1.

Proof. By Lemma 15.9.8, the weight of the infinite face in the graph consisting
of all accepted edges is at most

2 ·MST (G0)− ε · weight(accepted edges not in T)

so weight(accepted edges not in T) ≤ 2ε−1 · MST (G0). Since weight(T) =
MST (G0), it follows that the weight of all accepted edges is at most (1 +
2ε−1)MST (G0).

This completes the proof of Theorem 15.9.1.

15.10 TSP on bounded-branchwidth planar graphs

To be written.

