
Chapter 2

Basic graph definitions

To quote Berge,

It would be convenient to say that there are two theories and two
kinds of graphs: directed and undirected. This is not true. All graphs
are directed, but sometimes the direction need not be specified.

That is, for specific graph problems it is convenient to ignore the distinction
between endpoints.

We define one combinatorial structure, a graph.1 There are three ways to in-
terpret this combinatorial structure, as an undirected graph, as a directed graph,
and as a bidirected graph. Each kind of graph has its uses, and it is convenient
to be able to view the underlying graph from these di↵erent perspectives.

In the traditional definition of graphs, vertices are in a sense primary, and
edges are defined in terms of the vertices. We used this approach in defining
rooted trees in Chapter 1. In defined graphs, we choose to make edges primary,
and we will define vertices in terms of edges.

There are three reasons for choosing the edge-centric view:

• Self-loops and multiple edges, which occur often, are more simply handled
by an edge-centric view.

• Contraction, a graph operation we discuss later, transforms a graph in
a way that changes the identity of vertices but not of edges. The edge-
centric view is more natural in this context, and simplifies the tracking of
an edge as the graph undergoes contractions.

• The dual of an embedded graph is usefully viewed as a graph with the
same edges, but where those edges form a di↵erent topology.

There is one seeming disadvantage: our definition of graphs does not permit the
existence of isolated vertices, vertices with no incident edges. This disadvantage
is mitigated by interpreting a subset of edges of a graph as a kind of subgraph.

1
Our definition allows for self-loops and multiple edges, a structure traditionally called a

multigraph.

17

18 CHAPTER 2. BASIC GRAPH DEFINITIONS

2.1 Edge-centric definition of graphs

For any finite set E, a graph on E is a pair G = (V, E) where V is a partition
of the set E ⇥ {1, �1}, called the dart set of G. That is, V is a collection of
disjoint, nonempty, mutually exhaustive subsets of E ⇥ {1, �1}. Each subset is
a vertex of G. (The word node is synonymous with vertex). For any e 2 E, the
darts of e are the pairs (e, +1) and (e, �1), of which the primary dart of e is
(e, +1). For brevity, we can write (e, +1) as e+ and (e, �1) as e�.

For a graph G = (V, E), we use E(G) to denote E, the edge set of G, and
we use V (G) to denote V , the vertex set of G, and we use D(G) to denote the
dart set of of G.

Problem 2.1. Write pseudocode to implement BFS given a graph represented
as a partition of its dart set

a

b

c

d
e

f

gh

i

j

Figure 2.1: The vertex v is the subset of darts {(e, �1), (f, 1), (g, �1), (h, 1)}.
An example of a walk is (j, 1) (a, �1) (i, 1) (i, �1) (d, �1) (d, 1).

rev Define the bijection rev on darts by rev((e, �)) = (e, ��). For a dart d,
rev(d) is called the reverse of d, and is sometimes written as dR.

endpoints, head and tail, self-loops, parallel edges The head of a dart
(e, �) is the block v 2 V such that v contains (e, �). The tail of (e, �) is the
head of (e, ��).

Each element e 2 E has two endpoints, namely the head and tail of (e, 1).
If the endpoints are the same vertex, we call e a self-loop. In Figure 2.1, i is a
self-loop. If two elements have the same endpoints, we say they are parallel, for
example, b and j are parallel in Figure 2.1.

Edges and arcs We can interpret an element e 2 E as a directed arc, in
which case we distinguish between its head and tail, which are, respectively, the
head and tail of the primary dart (e, +1). If we interpret e as an undirected

2.1. EDGE-CENTRIC DEFINITION OF GRAPHS 19

edge, we do not distinguish between its endpoints. Thus use of the word edge
or arc indicates whether we intend to interpret the element as undirected or
directed. The edge or arc of a dart (e, �) is defined to be e.

We will sometimes use the notation uv to refer to an edge or arc or dart
whose endpoints are the vertices u and v (and where, if referring to an arc or
dart, u is the tail and v is the head). This notation is formally problematic
because the graph might have multiple edges with the same endpoints; we trust
that the reader will not be confused.

Parallel arcs/edges and self-loops If two arcs have the same tail and the
same head, we say they are parallel arcs. If two edges have the same pair of
endpoints, we say they are parallel edges. If the endpoints of an edge/arc are
the same, we say it is a self-loop. Our definition of graph permits parallel edges
and self-loops.

Incidence, degree We say an edge/arc/dart is incident to a vertex v if v is
one of the endpoints. The degree of a vertex v (written degree(v)) is the number
of occurences of v as an endpoint of elements of E (counting multiplicity2). The
outdegree of v (written outdegree(v)) is the number of arcs having v as a tail,
and the indegree (written indegree(v)) is the number of arcs having v as a head.

Endpoint notation We sometimes write an arc as uv to indicate that its tail
is u and its head is v, and we sometimes write an edge the same way to indicate
that its endpoints are u and v. This notation has the potential to be ambiguous
because of the possibility of parallel edges.

V (G) and E(G) For a graph G = (V, E), we use V (G) and E(G) to denote V
and E, respectively, and we use n(G) and m(G) to denote |V (G)| and |E(G)|.
We use D(G) to denote the set of darts of G. We may leave the graph G
unspecified if doing so introduces no ambiguity.

b

a e c

d

a
b c

e

d

Figure 2.2: Two graphs corresponding to the edges a, . . . , e.

2
That is, a self-loop contributes two to the degree of a vertex.

20 CHAPTER 2. BASIC GRAPH DEFINITIONS

2.2 Walks, paths, and cycles

Walks As illustrated in Figure 2.1, a non-empty sequence

d1 . . . dk

of darts is a walk if the head of di is the tail of di+1 for every 1  i  k. To be
more specific, it is a x-to-y walk if x is d1 or the tail of d1 and y is dk or the
head of dk. We define di to be the successor in W of di to be di+1 and we define
predecessor of di+1 to be di. We may designate a walk to be a closed walk if the
tail of d1 is the head of dk, in which case we define the successor of dk to be d1

and the predecesor of d1 to be dk. We also refer to a closed walk as a tour.

Paths and cycles A walk is called a path of darts if the darts are distinct, a
cycle of darts if in addition it is a closed walk. A path/cycle of darts is called a
path/cycle of arcs if each dart is of the form (e, +1). It is called a path/cycle of
edges if no edge is represented twice.

Simple paths and cycles, internal vertices A cycle is simple if every
vertex occurs at most once as the head of some di. A path is simple if it is
not a cycle and every vertex occurs at most once as the head of some di. A
vertex is said to belong to the path or cycle if the vertex is an endpoint of some
di. The internal vertices of a path d1 . . . dk are the heads of d1, . . . , dk�1. Two
paths/cycles are dart-disjoint if they share no darts, and are vertex-disjoint if
they share no vertices. Two paths are internally vertex-disjoint if they share no
internal vertices.

Walks, paths, and cycles of arcs/edges A sequence e1, . . . , ek of ele-
ments of E is a directed walk (or diwalk) if the sequence of corresponding darts
(e1, 1), . . . , (ek, 1) is a walk. It is a directed path (or dipath) if, in addition,
e1, . . . , ek are distinct. It is an undirected walk if there exist i1, . . . , ik 2 {1, �1}
such that the sequence of darts (e1, i1), . . . , (ek, ik) is a walk. It is an undi-
rected path if in addition e1, . . . , ek are distinct. The other definitions given for
sequences of darts apply straightforwardly to paths consisting of elements of E.

Empty walks and paths In the above, we neglected to account for the
possibility of an empty walk or path. Empty walks and paths are defined by a
vertex in the graph; they contain no darts. We do not allow for the existence of
empty cycles.

Lemma 2.2.1. A u-to-v walk of darts contains a u-to-v path of darts as a
subsequence.

2.2.1 Connectedness

Given a graph G = (V, E), for a vertex or dart x and a vertex or dart y, we say
x and y are connected in G if there is a v1-to-v2 path of darts in G. Similarly,

2.2. WALKS, PATHS, AND CYCLES 21

edges e1 and e2 are connected in G if there is a path of darts that starts with a
dart of e1 and ends with a dart of e2.

More generally, given a subset E0 of E, we say that v1, v2 are connected via
E0 in G if there is a v1-to-v2 path using only darts corresponding to edges of
E0.

A subset of V is connected in a graph if every two vertices in the subset
are connected. Connectedness is an equivalence relation on the vertex set. A
connected component is an equivalence class of this equivalence relation. Equiv-
alently, a connected component is a maximal connected vertex subset. Let (G)
denote the number of connected components of G.

The notion of connectivity can also be applied to edges; two edges are con-
nected if there is a path containing both of them. Thus the phrase connected
component could also refer to an equivalence class of this relation on edges, i.e.
a maximal connected edge subset. The reader should be able to discern which
meaning is intended.

2.2.2 Two-edge-connectivity and cut-edges

Edges e1 and e2 are two-edge-connected in G if G contains a cycle of edges
containing both of them. The equivalence classes of this relation are called
two-edge-connected components.

An edge e of G is a cut-edge if the two-edge-connected component containing
e contains no other edges.

Lemma 2.2.2 (Cut-Edge Lemma). An edge e of G is a cut-edge i↵ every path
between its endpoints uses e.

2.2.3 Subgraphs and edge subgraphs

We will use the term subgraph in two ways:

1. According to the traditional definition, a subgraph of a graph G = (V, E)
is simply a graph H = (V 0, E0) such that V 0 ✓ V and E0 ✓ E.

2. Because we often want to relate features of a subgraph to the graph from
which it came, we will often think of a subset E0 of edges of G as a
subgraph.

Ordinarily, the reader will be able to determine from context which meaning
is intended (or it will not matter). When necessary, we will use the term edge
subgraph to distinguish the latter meaning.

In a slight extension of this concept, in Chapter , when discussing the trav-
eling salesman problem, we will work with an edge multisubgraph E0, where E0

is a multiset whose elements come from E.
One significant distinction between a graph and an edge subgraph is this:

according to our definition, a graph G cannot contain a vertex with no incident
edges, whereas ordinarily an edge subgraph E0 is considered to include all the

22 CHAPTER 2. BASIC GRAPH DEFINITIONS

graph G

graph obtained by deletionsedge subgraph

Figure 2.3: This figure illustrates the di↵erence between an edge subgraph
(shown on the bottom-left) and a traditional subgraph, a graph obtained by
edge deletions (shown on the bottom-right). In the graph obtained by dele-
tions, the center vertex does not exist since all its incident edges have been
deleted. The edge subgraph does not formally include the grayed-out edges but
still contains the center vertex. There are other advantages to the edge subgraph
that we will discuss in the context of graph embeddings.

vertices of the original graph, and hence can include a vertex none of whose
incident edges belong to E0.

The usual definitions (walk, path, cycle, connectedness, two-edge-connectivity)
extend to an edge subgraph by restricting the darts comprising these structures
to those darts corresponding to edges in E0. For example, two vertices x and y
of G are connected in the edge subgraph E0 if there is an x-to-y path of darts
belonging to E0. As in graphs, a connected component of an edge subgraph of
G is a maximal connected subset of V (G). We define G(E0) to be the number
of connected components in this sense. For example, the edge subgraph on the
bottom-left in Figure 2.3 has two connected components. (The graph on the
bottom-right has only one.)

2.2.4 Deletion of edges and vertices

Deleting a set S of edges from G is the operation on a graph that results in
the subgraph or edge subgraph of G consisting of the edges of G not in S. We
denote this subgraph or edge subgraph by G � S.

The result of deleting a set V 0 of vertices from G is the graph (not the edge
subgraph) obtained by deleting all the edges incident to the vertices in V 0. This
subgraph is denoted G � V 0. Since isolated vertices (vertices with no incident
edges) cannot exist according to our definition of graphs, deleted vertices cease
to exist when deleted.

Deletion of multiple edges and/or vertices results in a graph or edge-subgraph
that is independent of the order in which the deletions occured.

2.2. WALKS, PATHS, AND CYCLES 23

2.2.5 Contraction of edges

For a graph G = (V, E) and an edge uv 2 E, the contraction of e in G is an
operation that produces the graph G0 = (V 0, E0), where

• E0 = E � {uv}, and

• the part of V containing u and the part of V containing v are merged (and
uv is removed) to form a part V 0.

The graph obtained from G by contracting e is denoted G/e.

b a

c d

e

e

c d

b

b a

c d

contracting a contracting e

Figure 2.4: (a) A graph with edges a, . . . , e. (b) The graph after the contraction
of edge a.

Like deletions, the order of contractions of edges does not a↵ect the result.
For a set S of edges, the graph obtained by contracting the edges of S is denoted
G/S.

2.2.6 Minors

A graph H is said to be a minor of a graph G if H can be obtained from G
by edge contractions and edge deletions. The relation “is a minor of” is clearly
reflexive, transitive, and antisymmetric.

Note that each vertex v of H corresponds to a set of vertices in G (the set
merged to form v).

24 CHAPTER 2. BASIC GRAPH DEFINITIONS

	Rooted forests and trees
	Rootward computations
	Separators for rooted trees
	Node separator

	Edge separators
	Computation time for finding separators
	Recursive tree decomposition

	Basic graph definitions
	Edge-centric definition of graphs
	Walks, paths, and cycles
	Connectedness
	Two-edge-connectivity and cut-edges
	Subgraphs and edge subgraphs
	Deletion of edges and vertices
	Contraction of edges
	Minors

	Elementary graph theory
	Spanning forests and trees
	Nontree edges and fundamental cycles

	Cuts
	(Undirected) cuts
	(Directed) dicuts
	Dart cuts
	Simple cuts
	Tree edges and fundamental cuts
	Paths and Cuts

	Vector Spaces
	The cut space
	The cycle space
	Bases for the cut space and the cycle space
	Another basis for the cut space
	Conservation and circulations

	Embedded graphs
	Embeddings
	Euler characteristic and genus
	Remark on the connection to geometric embeddings
	The dual graph
	Connectedness properties of embedded graphs
	Cut-edges and self-loops
	Deletion
	Compression (deletion in the dual) and contraction

	Chapter Notes

	Planar embedded graphs
	Planar embeddings
	Contraction preserves planarity
	Sparsity of planar embedded graphs
	Strict graphs and strict problems
	Semi-strictness
	Orientations with bounded outdegree
	Maintaining a bounded-outdegree orientation for a dynamically changing graph
	Analysis of the algorithm for maintaining a bounded-outdegree orientation

	Cycle-space basis for planar graphs
	Representing a circulation in terms of face potentials

	Interdigitating trees
	Simple-cut/simple-cycle duality
	Compressing self-loops
	Compression and deletion preserve planarity

	Left, right, and Crossings
	Emanating and entering from left and right
	Crossing walks

	Faces, edges, and vertices enclosed by a non-self-crossing cycle
	Trimming
	Biconnectivity
	Representing embedded graphs in implementations

	Separators in planar graphs
	Triangulation
	Weights and balance
	Fundamental-cycle separators
	Breadth-first search
	O(n)-vertex separator
	Size of the separator

	Noncrossing families of subsets
	The connected-components tree
	Vertex and face labels
	The connected-components tree

	Cycle separators
	Shortcutting a fundamental-cycle separator
	Balanced, short, and simple cycle

	Division into regions
	Computing a Decomposition Tree
	Number of Holes
	Number of Vertices and Boundary Vertices
	Admitting an r–division
	Running time

	Recursive divisions
	Chapter Notes

	Shortest paths with nonnegative lengths
	Shortest-path basics: path-length property and relaxed and tense darts
	Using a division in computing shortest-path distances
	The algorithm

	Correctness
	The Dijkstra-like property of the algorithm
	Accounting for costs
	The Payoff Theorem
	Analysis
	Parameters
	History

	Multiple-source shortest paths
	Slack costs, relaxed and tense darts, and consistent price vectors
	Slack costs
	Relaxed and tense darts
	Consistent price vectors

	Specification of multiple-source shortest paths
	Pivots

	Contiguity property of shortest-path trees in planar graphs
	The abstract MSSP algorithm
	Analysis of the abstract algorithm

	ChangeRoot: the inner loop of the MSSP algorithm
	Which darts are candidates for pivoting in?
	Efficient implementation
	ChangeRoot
	Data structure

	Number of pivots - the degenerate case
	Using the output of the MSSP algorithm
	Paths
	Distances
	Distance data structure

	Chapter Notes

	Shortest paths with negative lengths
	Total Monotonicity and the Monge Property
	Boundary distances and the Monge Property
	Finding all column minima of a Monge matrix
	Finding all the column minima of a triangular Monge matrix

	The Algorithm
	Computing Single-Source Inter-Part Boundary Distances
	Computing Single-Source Inter-Part Distances
	Correctness and Analysis
	Chapter Notes

	Shortest paths in dense distance graphs
	Decomposing a DDG into bipartite graphs
	The Monge heap
	Implementing Dijkstra's algorithm using Monge heaps
	Analysis

	Implementing Monge heaps
	Analysis

	Chapter Notes

	Single-source, single-sink max flow
	Flow assignments, capacity assignments, and feasibility
	Negative capacities

	Circulations
	Capacity-respecting circulations in planar graphs

	st-flows
	Max limited flow in st-planar graphs
	st-planar embedded graphs and augmented st-planar embedded graphs
	The set-up
	The algorithm

	Max flow in general planar graphs
	The algorithm
	Erickson's analysis
	Dual tree is shortest-path tree
	Crossing numbers

	Covering space
	The Universal Cover

	Finishing the proof
	Efficient Implementation
	Chapter Notes

	Multiple-source, multiple-sink max flow
	Distance Oracles
	An approximate distance oracle for undirected planar graphs
	Overall strategy
	Connections to a shortest path
	The oracle
	Efficient construction

	An Exact distance oracles with (n) space and (n) query time
	An exact oracle with (n4/3) space and O(log2 n) query time
	Additively weighted Voronoi diagrams.
	Point location in Voronoi diagrams
	The oracle

	Primal-dual method for approximation algorithm
	Goemans and Williamson's analysis of the primal-dual approximation algorithm
	Proving the bound for vertex-weighted Steiner tree
	Covering all directed cycles

	Branchwidth and local approximation schemes
	Dynamic programming on a rooted tree
	Carvings
	Carving-decomposition: carving of a vertex set
	Solving edge dominating set on a graph with a carving-decomposition of small width

	Carving-decomposition of a planar graph
	Branch decomposition: Carving of an edge-set
	Solving vertex cover on a graph with a branch decomposition of small width
	Biconnectivity and the block-cut tree
	Biconnected components and branchwidth

	A branchwidth bound for planar graphs
	The face-vertex incidence graph
	The embedded face-vertex incidence graph
	The dual of the face-incidence graph
	From a carving-decomposition of M(G) to a branch-decomposition of G
	Proof of the Radius-Branchwidth Theorem

	Approximation schemes
	The subgraph induced by k BFS levels has branchwidth at most 2k
	An approximation scheme for Vertex Cover
	An approximation scheme for maximum-weight independent set
	Maximum-weight set of edge-disjoint triangles
	Summary of approximation-scheme methodology

	Approximation scheme for the traveling salesman problem
	Cutting into small pieces
	First attempt
	Approximation through deletion decomposition

	The traveling salesman problem
	Approximating unit-weight Eulerian Bisubgraph
	Beyond unit-weight graphs: a sparsifier
	Contraction decomposition
	The framework
	Dual framework

	Properties of tours
	Lifting for TSP
	Spanner
	TSP on bounded-branchwidth planar graphs

	The brick decomposition and approximation schemes for Steiner problems
	Introducing the brick decomposition
	Portals
	Portalization
	Spanners for Steiner TSP and Steiner tree
	Beyond spanners: A more efficient PTAS for Steiner tree
	Brick decomposition: the construction
	Strip decomposition
	Columns

	Statement of subroutine lemmas for Steiner tree structure theorem
	Structure of Steiner tree within bricks
	Paths 0, …,
	The forest F' and paths Q0, …, Q
	The forest
	Type-1 and type-2 components
	Construction of
	Decomposition of Ki into KiN and KiS
	Span1
	Span2

	Approximation Schemes for some problems with optional connectivity
	Introduction
	PC Clustering
	The PC Clustering algorithm
	The weight of the output from the PC Clustering algorithm

	Appendix: Splay trees and link-cut trees
	Binary Search Trees
	Delta Representation of weights
	Supporting searches for small weight
	Delta Representation of min-weights
	Delta representation of left-right
	Rotation: An order-preserving structural change to a binary search tree
	Updating Delta representations in a rotation
	Updating minw representations in a rotation

	Splay trees
	Potential Functions for Amortized Analysis
	Analysis of splay trees

	Representation of link-cut trees
	High-level analysis of the expose operation
	Representation of trees
	Link-cut trees that do not support descendant search
	Implementing the expose operation for trees not supporting descendant search
	Analysis of Expose(u) for trees not supporting descendant search

	Link-cut trees that support descendant search
	Topological updates in link-cut trees
	Analysis of link and cut operations
	Evert

	Weight updates for link-cut trees
	Supporting AddToDescendants
	Supporting AddToAncestors
	Getting the weight of a node

	Weight searches in link-cut trees
	Supporting ancestor searches
	Supporting descendant searches
	Representing trees with dart weights

	Chapter Notes

