
Chapter 14

Branchwidth and local
approximation schemes

14.1 Dynamic programming on a rooted tree

Some problems are easy to solve on trees. Our example problem will be Vertex
Cover, which is NP-hard on general graphs and even on planar graphs. (Soon
we’ll see how to approximate the problem on planar graphs.)

Vertex Cover on Rooted Trees:

• input: a rooted tree with a function c(·) assigning weights to vertices

• output: a minimum-weight set S of vertices such that each edge is incident
to at least one vertex in S.

Imagine you’re posting guards at intersections so that each city block is
handled by a guard at one of the intersections. (Perhaps the different weights
reflect differences in popularity of the intersections, e.g. one intersection might
be near a café.

Next we give a linear-time algorithm that, for a tree, returns the minimum
weight of a vertex cover. It is easy to modify the algorithm so that it also
returns a minimum-weight vertex cover.

def VertexCover(T, r):
let (x, y) := helper(r)
return x

def helper(v):
let v1, . . . , vk be the children of v in T
for i = 1, . . . , k

let (xi, yi) := helper(vi).

y := weight(v) +
∑k
i=1 xi

173

174CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

x := min{y,∑k
i=1 yi}

return (x, y).

Lemma 14.1.1. VertexCover(T) returns the minimum weight of a vertex cover
of the tree T .

Proof. We will show by induction that helper(v) takes a node v and returns the
pair (x, y) where x is the minimum weight of a vertex cover of the subtree of T
rooted at v, and y is the minimum weight of a vertex cover of the same subtree,
subject to the constraint that v belong to the vertex cover. Certainly this is
true when v is a leaf. Suppose it is true for the children v1, . . . , vk of node v.
Let Tv be the subtree of T rooted at v. Let Cy be the vertex cover of Tv forced
to include v. The arcs vv1, . . . , vvk are covered by v and the arcs of Tv1 , . . . , Tvk
are covered by the optimal vertex covers for these subgraphs whose values are
x1, . . . , xk. So weight(Cy) = weight(v) +

∑k
i=1 xi. The optimal vertex cover

for Tv either contains v (and so has value y) or doesn’t. If it doesn’t, it must
contain all of v1, . . . , vk to cover the arcs vv1, . . . , vvk, in which case, the cover
has weight

∑k
i=1 yi.

The above algorithm is an application of dynamic programming. It is so
slick we are tempted to try to apply the idea to graphs that are not trees.

14.2 Carvings

For a ground set S, a carving of S is a maximal noncrossing family C of subsets
of S. By maximal, we mean that you cannot add any other subset of S to C
while preserving the noncrossing property. We refer to the sets in C as clusters.

Recall from Section 5.6 that a noncrossing family of sets forms a rooted forest
under the subset relation. The forest corresponding to a carving C is a rooted
binary tree, i.e. it has a single root and each node has at most two children. To
see that it is binary, suppose that some node X has children X1, X2, and X3.
The set X1 ∪X2 does not cross any descendant of X1 or X2 (it includes each of
these sets) or X3 (it is disjoint from this set) or any ancestor of X (it is a subset
of each of these sets) or any node that is neither an ancestor nor a descendant
of X (is disjoint from these sets). Therefore C ∪ {X1 ∪X2} is also noncrossing,
contradicting the maximality of C.

Figure 14.1: Copy of Figure 5.3. The diagram on the left shows a Venn diagram
of some noncrossing sets, and the diagram on the right shows the corresponding
rooted forest (a tree in this case).

14.3. CARVING-DECOMPOSITION: CARVING OF A VERTEX SET 175

Figure 14.2: This figure shows a carving-decomposition of a graph. Clusters
other than the trivial ones (singletons and whole graph) are indicated. The
width is four.

14.3 Carving-decomposition: carving of a ver-
tex set

Let G be a graph. A carving C of V (G) is called a carving-decomposition. The
width of a carving-decomposition is max{|δG(X)| : X ∈ C}. Recall that δG(X)
is the cut in G corresponding to X, i.e. the set of edges of G having exactly
one endpoint in X. The carvingwidth of a graph is the minimum width over all
carving-decompositions.

For each vertex v of G, the carving contains the singleton set {v}. The
corresponding cut δG({v}) includes all the edges incident to v (not including
self-loops). Thus the width is at least the maximum degree of the graph. This
somewhat limits the usefulness of carvingwidth.

The following lemma is obvious but useful.

Lemma 14.3.1. Deleting edges or vertices does not increase the carvingwidth
of a graph.

14.3.1 Solving edge dominating set on a graph with a
carving-decomposition of small width

An edge dominating set of a graph is a set S of edges such that each edge in the
graph shares a vertex with some edge in S.

Theorem 14.3.2. There is an algorithm that, given a graph G with edge-weights
and a carving-decomposition C of G, finds the minimum-weight edge dominating
set of G in time O(2wn) where w is the width of C.

The algorithm uses dynamic programming. For each cluster X ∈ C, the
algorithm constructs a table MX [·] indexed by the subsets of δG(X). For such a
subset A, MX [A] is the minimum-weight of a subset of edges that covers every
edge in G[X − ∂G(A)], i.e. every edge whose endpoints are in X and are not
endpoints of edges of A. Recall that the clusters of C form a tree according to set
inclusion. The dynamic program uses rootward computation on this tree. At the
root, the table MV (G)[·] is computed, and MV (G)[∅] is the minimum weight of

176CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

an edge dominating set. Below we give the dynamic program to compute these
tables and thus the minimum weight of a dominating set; the dynamic program
can be instrumented to facilitate subsequent computation of the dominating set
itself.

def EdgeDomTable(X):
if X is a leaf,
MX [A] := 0 for each A ⊆ δ(X)

else
let X1, X2 be the children of X
for i = 1, 2, MXi

:= EdgeDomTable(Xi)
for every subset A of δ(X):

for every subset A′ of edges between X1 and X2,
if every edge between X1 and X2 shares an endpoint with an edge in A ∪A′,
MX [A] := min{MX [A],weight(A′) +

∑2
i=1MXi [(A ∪A′) ∩ δ(Xi)]}

return MX [·]

14.4 Carving-decomposition of a planar graph

The following bound on carvingwidth uses the same idea as Fundamental Cycle
Separator (Lemma 5.3.1 in Section 5.3).

Lemma 14.4.1. Let G be a planar embedded graph of degree at most ∆. Let
T ∗ be a spanning tree of the dual G∗, and suppose that every simple path in T ∗

consists of at most k edges. Then G has a carving-decomposition of width at
most k + ∆− 1.

Proof. Let T be the set of edges not in T ∗. Then T is a spanning tree of G.
Let r be a vertex with one incident edge of T . Consider T as rooted at r. We
define a carving of V (G).

For each vertex v of G, let C(v) denote the set of descendants of v. First
consider the case v = r. Note that C(r) consists of all the vertices of G, so
δG(C(r)) = ∅. Now suppose v 6= r, and let d be the parent dart of v. In this
case, δG(C(v)) is the fundamental cut of d with respect to T , and is therefore
the fundamental cycle of d with respect to T ∗. The fundamental cycle of d
consists of d itself together with a simple path in T ∗, and therefore consists of
at most k + 1 edges.

The family {C(v) : v ∈ V (G)} is not a carving because it is not maximal,
so we must add some additional clusters.

Let v be a vertex, and let its children be v1, . . . , vs. For i = 0, 1, 2, . . . , s− 1,
define Ci(v) = {v} ∪ ⋃ij=1 C(vj). The proof that |δG(Ci(v))| ≤ k + ∆ − 1 is
similar to the proof that |δG(C(v)| ≤ k + 1 and is illustrated in Figure 14.3.

To finish the proof, the following properties can be shown.

1. The family of clusters C = {C(v) : v with at least one child} ∪ {Ci(v) :
v ∈ V (G), i ≤ number of children of v} is noncrossing.

14.5. BRANCH DECOMPOSITION: CARVING OF AN EDGE-SET 177

Figure 14.3: This figure illustrates the construction of a carving-decomposition
for a planar graph with a spanning tree. The solid closed curves are fundamental
cycles in the dual. Since each simple path in the dual spanning tree has size at
most k, the fundamental cycles have size at most k+1. For a complete carving-
decomposition, the dashed closed curves are needed. Each of these consists of a
simple path in the dual spanning tree, plus at most ∆− 1 additional edges that
in the primal are incident to the vertex v.

2. The number of clusters in C shows that it is maximal.

The width bound in Lemma 14.4.1 can be improved for a special case.

Lemma 14.4.2. Let G be a planar embedded graph of degree at most four. Let
T ∗ be a spanning tree of the dual G∗, and let f be a vertex of G∗. Suppose that
every simple from-f path in T ∗ has at most r edges, and that G∗ is bipartite.
Then G has a carving decomposition of width at most 2r.

Problem 14.1. Prove Lemma 14.4.2.

The disadvantage of carvingwidth as a measure is that it cannot be very
small if the graph’s maximum degree is large. The next measure we study can
be small even if the degree is large.

14.5 Branch decomposition: Carving of an edge-
set

Let G be a graph. A carving C of E(G) is called a branch-decomposition. The
width of a branch-decomposition is max{|∂G(X)| : X ∈ C}, where ∂G(X) is the

178CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

set of vertices with some incident edge in X and some incident edge not in X.

The following lemma is analogous to Lemma 14.3.1 but stronger.

Lemma 14.5.1. Deleting or contracting edges does not increase the branchwidth
of a graph.

14.5.1 Solving vertex cover on a graph with a branch de-
composition of small width

Theorem 14.5.2. There is an algorithm that, given a graph G with vertex-
weights and a branch-decomposition C of G, finds the minimum-weight vertex
cover of G in time O(4wn) where w is the width of C.

The algorithm resembles that given for edge dominating set in a graph with a
carving-decomposition. For each edge-subset X ∈ C, the algorithm constructs a
table MX [·] indexed by the subsets of ∂G(X). For such a subset A, MX [A] is the
minimum-weight of a subset of vertices that covers all edges in X that are not
incident to vertices in A. Since ∂G(E(G)) = ∅, ME(G)[∅] is the minimum-weight
of a vertex cover.

Problem 14.2. Prove Theorem 14.5.2 by giving the algorithm for minimum-
weight vertex cover.

So far, we have seen dynamic-programming algorithms only for minimization
problems. Now we consider a maximization problem, maximum-weight indepen-
dent set. An independent set in a graph G is a set S of vertices such that G[S]
has no edges. Given a graph with vertex-weights,

Problem 14.3. Give an algorithm that, given a graph with vertex-weights and
a branch-decomposition of width w, finds a maximum-weight independent set.
The running time of the algorithm should be 2O(w)n.

14.5.2 Biconnectivity and the block-cut tree

Recall from Section 4.10 that a graph is biconnected if every pair of edges
belong to some simple cycle. A biconnected component (or block) of a graph is
a maximal biconnected subgraph.

Two biconnected components may share a vertex, in which case the ver-
tex is called an articulation point (or a cutpoint). Note that two biconnected
components cannot share two vertices.

The block-cutpoint tree of a connected graph G is a bipartite graph. It has
a vertex for each block of G and a vertex for each cutpoint; for each block and

14.6. A BRANCHWIDTH BOUND FOR PLANAR GRAPHS 179

Figure 14.4: The top diagram shows a graph with its biconnected components.
The bottom diagram shows the block-cutpoint tree.

cutpoint in that block, there is an edge between the corresponding vertices. A
cycle in this graph would imply the existence of a simple cycle containing edges
from distinct blocks, contradicting the definition of block.

14.5.3 Biconnected components and branchwidth

Lemma 14.5.3. Let G be a graph. Suppose that every biconnected component
of G has branchwidth at most w. Then G has branchwidth at most w + 1.

Problem 14.4. Use the block-cut tree of G to prove Lemma 14.5.3.

14.6 A branchwidth bound for planar graphs

For a graph and a vertex r, we define the radius of G with respect to r to be the
maximum vertex depth in a breadth-first-search tree rooted at r. That is, the
radius is the maximum over vertices v of the minimum size of an r-to-v path.

Lemma 14.6.1. There is a linear-time algorithm that, given a planar embedded
graph G, returns a branch-decomposition whose width is at most

2 min{radius of G, radius of G∗}

where the radii are with respect to given vertices.

Lemma 14.6.1 follows from a stronger result. To prove the stronger re-
sult, we derive two other plane graphs from G, the face-vertex incidence graph
FV (G) and its dual, the medial graph M(G). We show how to obtain a carving-
decomposition of the medial graph, and then show how to transform it to a
branch-decomposition of G.

180CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

Figure 14.5: On the left is a fragment of an embedded graph. On the right is
the same fragment, with part of the face-incidence graph superimposed.

Figure 14.6: On the left is a planar embedded graph. On the right is the same
graph with the face-incidence graph superimposed. The face vertices are filled
in.

14.6.1 The face-vertex incidence graph

Let G be an embedded graph. A graph is a face-vertex incidence graph of G
if its vertex set corresponds one-to-one with the union of the vertex set of G
and the face set of G, and if, for a vertex v and a face f of G, the vertices
corresponding to v and f are adjacent in FV (G) if v occurs on the boundary of
f .

Informally, we will refer to the face-vertex incidence graph of G since up to
isomorphism there is just one.

Theorem 14.6.2 (Radius-Branchwidth Theorem). There is a linear-time al-
gorithm that, given a plane graph G that is not a tree and a vertex f of the
face-incidence graph of G, finds a branch-decomposition of G whose width is at
most the radius of the face-vertex incidence graph with respect to f .

A path in G or a path in G∗ corresponds to a path in the face-incidence
graph at most twice the size. This shows that the Radius-Branchwidth Theorem
implies Lemma 14.6.1.

In proving the Radius-Branchwidth-Theorem, we assume G is connected,

14.6. A BRANCHWIDTH BOUND FOR PLANAR GRAPHS 181

else the radius of the face-vertex incidence graph is infinite. Since G is not a
tree, it has at least two faces.

14.6.2 The embedded face-vertex incidence graph

For brevity, we refer to the face-vertex incidence graph as the FV graph. From
examining a diagram of the FV graph, the following properties are intuitively
obvious:

FV Property 1 The FV graph inherits a planar embedding from the original
graph,

FV Property 2 Each face of the FV graph has size four.

FV Property 3 The faces of the FV graph correspond one-to-one with edges
of the original graph (each original edge is embedded in one face of the
face-vertex incidence graph).

We will formally define the face-vertex graph ofG as an embedded graph FV (G).
This will enable us to prove the FV properties. Moreover, the formal embedding
will be useful to anyone who wishes to implement the construction of the face-
vertex incidence graph. The embedding for FV (G) will be denoted π̂.

The figures suggest that, for each vertex v of G, the edges incident to v in
FV (G) should be interspersed between the edges incident to v in G itself. That
is, for each consecutive pair d, π[d] of outgoing darts of v in G, we shall place a
dart of FV (G).

dπ[d]

d,+1

We shall designate this dart as (d,+1). The next dart in the embedding cycle
is between π[d] and π[π[d]], so it must be (π[d],+1)

dπ[d]

d,+1

π[π[d]]

π[d],+1

and so we shall define

π̂[(d,+1)] := (π[d],+1) (14.1)

The dart (d,+1) belongs to some face of FV (G), and the next dart in the face
is

(π̂)∗[(d,+1)] = π̂[rev((d,+1))]

= π̂[(d,−1)]

182CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

How then should we define π̂[(d,−1)]? The figure

dπ[d]

d,+1d,-1

π-1[rev(d)]

next in face

indicates that the next dart in the face is the reverse of the dart between
π−1[rev(d)] and rev(d). According to the convention we have established, the
dart of FV (G) between π−1[rev(d)] and rev(d) is (π−1[rev(d)],+1). We must
therefore define

π̂[(d,−1)] := (π−1[rev(d)],−1) (14.2)

d

d,+1d,-1

π-1[rev(d)]

π-1[rev(d)],-1

We now have defined the image under π̂ of darts of the form (d,+1) and of darts
of the form (d,−1), so we have completely defined π̂, and therefore completely
defined the embedded graph FV (G).

Let’s continue to explore the face of FV (G) containing (d,+1). For con-
venience, let d′ denote π−1[rev(d)]. The next dart in the face after (d′,−1) is
π̂[(d′,+1)], which according to 14.1, is

(π[d′],+1) = (π[π−1[rev(d)]],+1)

= (rev(d),+1)

d

d,+1

π-1[rev(d)]

π-1[rev(d)],-1

rev(d),+1

The next dart in the face is

π̂∗[(rev(d),+1)] = π̂[(rev(d),−1)]

= (π−1[rev(rev(d))],−1) by 14.2

= (π−1[d],−1)

14.6. A BRANCHWIDTH BOUND FOR PLANAR GRAPHS 183

d
d,+1

π-1[rev(d)],-1

rev(d),+1

π-1[d],-1

To find the next dart in the face, we again reverse this dart, obtaining
(π−1[d],+1), and apply π̂ using 14.1, obtaining

π̂[(π−1[d],+1)] = (π[π−1[d]],+1)

= (d,+1)

so we are back where we started, having traversed the whole face. The face
consists of four darts, (d,+1), (π−1[rev(d)],−1), (rev(d),+1), and (π−1[d],−1),
so we have proved FV Property 2. Next, define the function g(·) on edges of G
by mapping e to this cycle of darts:

g(e) = {(d,+1) (π−1[rev(d)],−1) (rev(d),+1) (π−1[d],−1)} where d = (e,+1)
(14.3)

Note that the darts of e occur only in pairs with +1. This shows that distinct
edges e, e′ map to disjoint faces of FV (G). The number of such faces is |E(G)|,
so the number of darts of FV (G) in all such faces is 4|E(G)|, which is precisely
the number of darts of FV (G). This shows that every dart of FV (G) is in one
such face, so these are the only faces of FV (G). We have proved FV Property 3.

Finally, we prove FV Property 1, that the embedding is planar. Assume for
simplicity that G is connected. Let n,m, φ be the number of vertices, edges,
and faces of G. Since G is planar, n−m+φ = 2. Let n′,m′, φ′ be the number of
vertices, edges, and faces of FV (G). By construction, n = n+ φ and m′ = 2m.
We have just seen that φ′ = m. Therefore

n′ −m′ + φ′ = n+ π − 2m+m

= n−m+ π

= 2

so FV (G) is planar. We have proved FV Property 1.

14.6.3 The dual of the face-incidence graph

The dual of the face-incidence graph is called the medial graph of G, and is
denoted M(G). Each vertex of M(G) is a face f of FV (G), and g−1(f) is an
edge of G, where g(·) is the bijection defined in 14.6.2.

When we draw M(G) on top of a drawing of G, we place each vertex x of
M(G) in the middle of the corresponding edge g−1(x)G, as shown in Figure 14.7.
For a set X of vertices of M(G), let us use g−1(X) to denote {g−1(x) : x ∈ X},

i.e. the corresponding set of edges of G.

184CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

Figure 14.7: The drawing on the left shows the medial graph superimposed on
the face-incidence graph and the original graph. The figure on the right shows
the medial graph with just the original graph.

14.6.4 From a carving-decomposition of M(G) to a branch-
decomposition of G

Since FV (G) is a bipartite planar graph of degree at most four, Lemma 14.4.2
proves that it has a carving-decomposition C of width at most twice the radius
of FV (G). We will show that C can be transformed into a branch-decomposition
C′ of G having at most half the width of C.

Each cluster X of C is a set of vertices of M(G), so g−1(X) is a set of edges
of G. Define

C′ = {g−1(X) : X ∈ C} (14.4)

The fact that C is a carving of V (M(G)) implies that C′ is a carving of E(G).

Lemma 14.6.3. The width of C′ is at most half the width of C.

Proof. The proof is illustrated in Figure 14.8. Let X be a cluster in C, and let
Y = g−1(X) be the corresponding cluster in C′. We must show that |∂G(Y)| ≤
1
2 |δM(G)(X)|. To do this, we show that each vertex v ∈ ∂G(Y) corresponds to
at least two distinct edges e1, e2 ∈ δM(G)(X) such that e1 and e2 are darts of
v. The latter condition ensures that there is no double-counting; for distinct
vertices u, v ∈ ∂G(Y), the two edges corresponding to u are distinct from the
two edges corresponding to v.

Since v ∈ ∂G(Y), δG(v) contains at least one edge in Y and at least one edge
not in Y . Let v = (d0 d1 d2 . . . dk−1), and let di, di+1, . . . , dj be a maximal
consecutive subsequence of d0 d1 d2 . . . dk−1 consisting of darts of edges in Y .
Then di−1 and dj+1 (interpreting - and + as mod k) are darts of edges not in
Y . (Possibly di−1 = dj+1.)

See Figure 14.9.
Let ej and ej+1 be the edges of dj and dj+1, respectively. It follows from

the definition of g(·) that g(ej+1) contains (dj+1,−1) and that g(ej) contains

14.6. A BRANCHWIDTH BOUND FOR PLANAR GRAPHS 185

X

Figure 14.8: The thick dark edges belong to G. The thin light edges belong
to M(G). The shaded region represents a set X of vertices of M(G), which
corresponds to a set Y of edges of G. The dark circle is a vertex v of G. It
is on the boundary of Y , which means that a nonempty proper subset of the
edges incident to v belong to Y . The figure illustrates that, for each vertex v on
the boundary of Y , at least two edges of M(G) belong to δM(G)(X). Moreover,
these two edges are both darts of v, so no edge is counted for two different
vertices.

dj+1,+1

dj+1,+1
dj+1

v

dj

Figure 14.9: The black lines represent darts of G. The green line is a dart of
FV (G) pointing from a vertex of G to a face of G. The red line is a dart of
M(G).

186CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

(π[dj],+1), which is (dj+1,+1). This shows that g(ej) and g(ej+1) are the
tail and head, respectively, of (dj+1,+1) in M(G), which shows that dj+1 ∈
δM(G)(X). The proof that di ∈ δM(G)(f(X)) is similar.

14.6.5 Proof of the Radius-Branchwidth Theorem

Now we can prove the Radius-Branchwidth Theorem (Theorem 14.6.2): there
is a linear-time algorithm that, for a plane graph G and a vertex r of FV (G),
finds a branch-decomposition of G whose width is at most one plus the radius
of FV (G) with respect to r. The algorithm constructs FV (G) and computes
an r-rooted breadth-first-search tree T ∗ of FV (G). By applying Lemma 14.4.2,
the algorithm finds a carving-decomposition C of M(G). The width of C is at
most k+ ∆− 4 where k is the maximum number of edges in any simple path in
T ∗ and ∆ is the degree of M(G). Let ρ be the radius of FV (G) with respect to
r. Since k ≤ 2ρ and ∆ = 4, the width of C is at most 2ρ. The algorithm then
constructs a branch-decomposition C′ of G as defined in 14.4. By Lemma 14.6.3,
the width of C′ is at most ρ.

14.7 Approximation schemes

Can we find a minimum-weight vertex cover in a planar graph? This problem
turns out to be NP-hard. However, the problem does admit an approximation
scheme. That is, for each ε > 0, there is a polynomial-time algorithm that
finds a solution whose weight is at most 1 + ε times optimal. How can that
be? The running time of the algorithm is 2O(1/ε)n. For every fixed ε, therefore,
the algorithm takes O(n) time. For this reason, we consider it a linear-time
approximation scheme.

In this section, we describe a methodology for deriving linear-time approx-
imation schemes for a variety of optimization problems in planar graphs. The
problems amenable to this methodology include minimum-weight vertex cover,
minimum-weight edge dominating set, and maximum-weight independent set.

The methodology can be used for these problems in part because of the
following property:

Whole-to-parts property: Let G be a graph and let H be a subgraph.
For any solution S for G, the subset of S that belongs to H is a
solution for H.

For example, if S is any vertex cover for G then the subset of S belonging to H
is a vertex cover for H.

3

14.7.1 The subgraph induced by k BFS levels has branch-
width at most 2k

The basis for these approximation schemes (and for others discussed in subse-
quent chapters) is breaking a planar graph into subgraphs each consisting of a

14.7. APPROXIMATION SCHEMES 187

small sequence of breadth-first search levels. The following lemma shows that
such a subgraph has small branchwidth.

Let G be a plane graph. Fix a root vertex r, and consider the breadth-first-
search levels of vertices and edges of G with respect to r. Let V` = {v ∈ V (G) :
level(v) = `}.

Lemma 14.7.1 (BFS-Branchwidth Lemma). G[V`+1 ∪ V`+2 ∪ · · · ∪ V`+k] and
its dual have branchwidth at most 2k.

Proof. Let G′ be the graph obtained from G by deleting all vertices at levels
greater than `+ k and contracting edges of the breadth-first-search tree whose
endpoints have levels less than ` + 1. The contractions result in a vertex r′.
The remaining breadth-first-search-tree edges form an r′-rooted tree of depth
at most k. By Lemma 14.6.1, therefore, G′ and its dual G′∗ have branchwidth
at most 2k. By Lemma 14.5.1, G′ − r′ and its dual still have branchwidth at
most 2k, which proves the lemma.

14.7.2

4

14.7.3 An approximation scheme for Vertex Cover

To find an approximately optimal solution to an optimization problem in a
planar graph, we decompose the input graph into subgraphs to which the BFS-
Branchwidth Lemma applies, solve the problem exactly in each subgraph, and
combine these solutions to obtain a solution for the input graph. We repeat
this process for several slightly different decompositions, and output the best
solution thereby obtained.

The form of the decomposition depends on whether the optimization problem
is a maximization problem or a minimization problem, and whether the problem
involves selection of vertices or selection of edges.

To illustrate the methodology, we will describe the approximation scheme for
minimum-weight vertex cover. The input consists of an error parameter ε > 0
and a plane graph G with an assignment weight(·) of weights to vertices.

The algorithm is as follows.

• Arbitrarily choose a vertex r of G. Execute breadth-first search on G,
rooted at r.

• Let k = d1/εe. For i = 0, 1, . . . , k − 1 and j = −1, 0, 1, 2, . . . , let Gij
denote the subgraph of G induced by the vertices at levels jk+ i through
(j + 1)k + i, and let Sij be the minimum-weight vertex cover in Gij .

• For i = 0, 1, 2, . . . , k−1, let Si =
⋃
j Sij , and return whichever of S0, . . . , Sk−1

has the least weight.

188CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

Now we show that each set Si (and in particular the set returned by the algo-
rithm) is a vertex cover. Fix i = q. The graphs Gq0, Gq1, Gq2 form a decom-
position of G. Each subgraph Gqj consists of a consecutive sequence of k + 1
breadth-first-search levels, as shown below:

levels q through q+k

levels q+k through q+2k

levels q+2k through q+3k

Two consecutive subgraphs in the decomposition overlap at a single level of
vertices.

The overlap ensures that every edge e in G is at least one of Gq0, Gq1, Gq2,
Suppose e is in Gqj Then Sqj must contain one of e’s endpoints, so e is covered
by
⋃
j Sqj . We have proved the following property:

Parts-to-whole property: For each choice of i, the union of solutions
for the subgraphs forming the decomposition is a solution for the
whole graph.

This property implies that the algorithm’s output is indeed a vertex-cover.
How fast is the algorithm? By the BFS-Branchwidth Lemma (Lemma 14.7.1),

each subgraph Gij has branchwidth at most 2(k + 1), so, by Theorem 14.5.2,
the minimum-weight vertex cover Sij can be found in time O(42(k+1)|V (Gij)|).
Summing over all i and j, the total time is O(k42(k+1)n).

Performance analysis

Now we prove the algorithm returns a solution whose weight is at most 1 + ε
times optimal. The analysis is based on the whole-to-parts property given in
Section 14.7:

Whole-to-parts property: Let G be a graph and let H be a subgraph.
For any solution S for G, the subset of S that belongs to H is a
solution for H.

Let OPT denote a minimum-weight vertex cover. Since

OPT ∩ {vertices whose levels are congruent to 0 mod k}
OPT ∩ {vertices whose levels are congruent to 1 mod k}

...

OPT ∩ {vertices whose level are congruent to k − 1 mod k}
are disjoint,
∑

i

weight(OPT∩{vertices whose levels are congruent to i mod k}) ≤ weight(OPT)

14.7. APPROXIMATION SCHEMES 189

This shows that the average weight is at most (1/k)weight(OPT), so at least
one of these sets has weight at most (1/k)weight(OPT). (This argument is
called averaging.)

Let q be the integer whose congruence class has the least weight. Consider
the decomposition

Gq0, Gq1, Gq2, . . .

Every vertex of G occurs in exactly one of these subgraphs except for the vertices
whose levels are congruent to q, and these vertices occur in exactly two. In
particular, every vertex in OPT occurs exactly once in

OPT ∩ V (Gq0), OPT ∩ V (Gq1), OPT ∩ V (Gq2), . . .

except for the vertices in OPT whose levels are congruent to q, which occur
twice. The sum of weights

weight(OPT ∩V (Gq0)) + weight(OPT ∩V (Gq1)) + weight(OPT ∩V (Gq2) + · · ·

is therefore

weight(OPT)+weight(OPT∩{vertices whose level are congruent to q mod k})

which is at most (1 + (1/k))weight(OPT).
For j = 0, 1, 2, . . ., by the whole-to-parts property, the minimum weight of a

vertex cover of Gqj is at most weight(OPT ∩ V (Gq0)) so

Sq =
∑

j

minimum weight of a vertex cover of Gqj

≤ (1 + (1/k))weight(OPT)

The algorithm does not know OPT , so does not know q. However, the
algorithm returns whichever of S0, . . . , Sk−1 has minimum weight, so the weight
of the solution returned is at most that of Sq. This shows that the solution
returned is at most (1 + ε)weight(OPT).

Remark 14.7.2. The approximation error in this algorithm results from the
design of the decomposition into parts, and that design in turn is chosen to
satisfy the parts-to-whole property.

Remark 14.7.3. Trying all the congruence classes is critical to this method-
ology. In the next chapter, we will see a different methodology in which the
algorithm can explicitly select the best congruence class.

14.7.4 An approximation scheme for maximum-weight in-
dependent set

Now we illustrate how the methodology can be used to obtain an approxima-
tion algorithm for a maximization problem, namely Independent Set. The
approximation scheme must use a decomposition that satisfies the parts-to-whole

190CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

property. In order to ensure that the union of independent sets of parts is an
independent set of the whole, we must ensure that vertices in distinct parts are
not adjacent. We therefore use a decomposition of the following form.

levels q+k+1 through q+k+k-1

levels q+1 through q+k-1

levels q+2k+1 through q+2k+k-1

As before, each subgraph in the decomposition consists of a consecutive sequence
of breadth-first-search levels, but this time consective subgraphs are separated
by a single level of vertices. This ensures that no edge connects vertices in
distinct subgraphs, establishing the parts-to-whole property.

Given error parameter ε > 0, plane graph G, and assignment weight(·) of
weights to vertices, the algorithm is as follows.

• Arbitrarily choose a vertex r of G. Execute breadth-first search on G,
rooted at r.

• Let k = d1/εe. For i = 0, 1, . . . , k− 1 and j = −1, 0, 1, 2, . . . let Gij denote
the subgraph of G induced by the vertices at levels jk + i + 1 through
(j + 1)k + i − 1, and let Sij be the maximum-weight independent set in
Gij .

• For i = 0, 1, 2, . . . , k−1, let Si =
⋃
j Sij , and return whichever of S0, . . . , Sk−1

has the greatest weight.

As in the approximation scheme for minimum-weight vertex cover, the maximum-
weight independent sets in the graphs Gij can be found in time 2O(k)n. Thus
the running time of the algorithm is 2O(k)n.

Performance analysis

The analysis is similar to that for vertex cover. As required by the whole-to-parts
property, an independent set of the whole graph induces an independent set in
any subgraph. Let OPT denote a maximum-weight independent set. Since

OPT ∩ {vertices whose levels are congruent to 0 mod k}
OPT ∩ {vertices whose levels are congruent to 1 mod k}

...

OPT ∩ {vertices whose level are congruent to k − 1 mod k}

14.7. APPROXIMATION SCHEMES 191

are disjoint, at least one of these sets has weight at most (1/k)weight(OPT).
Let q be the integer whose congruence class has the least weight.

For each j, OPT ∩ V (Gqj) is an independent set, so the the weight of Sqj ,
the maximum-weight independent set, is at least that of OPT ∩ V (Gqj). Every
vertex of OPT is in

⋃
j V (Gqj) except for the vertices whose levels are congruent

to q mod k. Therefore

weight(Sq) = weight(
⋃

j

Sqj)

≤ weight(OPT)− weight({vertices whose levels are congruent to q mod k})

≤ weight(OPT)− 1

k
weight(OPT)

≤ (1− ε)weight(OPT)

Remark 14.7.4. Once again, the approximation error comes from the design
of the decomposition, and that design is chosen to satisfy the parts-to-whole
property.

14.7.5 Maximum-weight set of edge-disjoint triangles

Now we show how to apply the methodology to a maximization problem involv-
ing edges. A triangle is a set of three edges xy, yz, xz on three endpoints. The
goal is to find a maximum-weight set of edge-disjoint triangles. The approxi-
mation scheme for this problem can be formulated like the others, but we take
a slightly different approach to illustrate another interpretation.

As before, let k = 1/ε, and consider the breadth-first search levels with
respect to an arbitrary vertex r. For i = 0, 1, . . . , k − 1, let Ei be the set
of edges of G whose levels are congruent mod k to i. Removing Ei from
G results in disconnected subgraphs of the form G[Vjk+i+1 ∪ · · · ∪ Vjk+i+k].

levels i+k+1 through i+k+k

levels i+1 through i+k

levels i+2k+1 through i+2k+k

Each of these subgraphs has branchwidth at most 2k, so their union has branch-
width at most 2k. We summarize this result in a lemma.

Lemma 14.7.5. Let G be a plane graph, let r be a vertex, let k be a positive
integer, and let Ei be the set of edges of G whose levels are congruent mod k
to i. Then G− Ei has branchwidth at most 2k.

192CHAPTER 14. BRANCHWIDTH AND LOCAL APPROXIMATION SCHEMES

For i = 0, 1 . . . , k, the approximation finds the maximum-weight set of edge-
disjoint triangles in G−Ei, and returns the solution of greatest weight. Because
the branchwidth of G − Ei is at most 2k, the optimum solution in this graph
can be found in time 2O(k)n.

Performance analysis

The performance analysis resembles that of maximum independent set. Let
OPT be a maximum-weight set of edge-disjoint triangles. For i = 0, . . . , k − 1,
let Si be the set of triangles in OPT that have edges in Ei. Note that each
triangle has edges in at most one set Ei. Let q = minarg iweight(Si). Then
weight(Sq) ≤ 1

kweight(OPT). Thus the maximum weight of a set of edge-
disjoint triangles in G− Eq is at least (1− 1

k)weight(OPT).

14.7.6 Summary of approximation-scheme methodology

To summarize some aspects of the methodology, for a given maximization or
minimization problem, one first chooses a family of decompositions of the graph.
Each decomposition in the family consists of a collection of subgraphs, and each
subgraph is that induced by a short sequence of consecutive levels (breadth-first
search levels in the graph or its face-vertex incidence graph). The subgraphs
comprising a decomposition are mostly disjoint; in the case of a maximization
problem, a pair of consecutive subgraphs are separated by a small number of
levels, and in the case of a minimization problem, they overlap on a small
number of layers.

The maximization/minimization problem should satisfy the whole-to-parts
property, i.e. a solution for the whole graph should induce a solution on each
subgraph in a decomposition. Moreover, each decomposition should be chosen
so as to satisfy the parts-to-whole property, i.e. the union of solutions for the
subgraphs should constitute a solution for the entire graph.

The minimization/maximization problem might have to be slightly gener-
alized in order to ensure that the whole-to-parts and parts-to-whole properties
are satisfied. The following problems illustrate this.

Problem 14.5. Give a linear-time approximation scheme for minimum-weight
edge dominating set in planar graphs.

Problem 14.6. A dominating set of a graph is a set S of vertices such that each
vertex of the graph is within one hop of a vertex of S, i.e. is in S or is adjacent
to a vertex in S. Give a linear-time approximation scheme for minimum-weight
dominating set in planar graphs.

