Chapter 8

Shortest paths with
negative lengths

In this chapter we describe a linear-space, nearly linear-time algorithm that,
given a directed planar graph G with real positive and negative lengths, but
no negative-length cycles, and given a vertex s € V(G), computes single-source
shortest paths from s to all vertices of G.

The algorithm triangulates G by adding edges with sufficiently large length
so that shortest paths are not affected. It then uses the cycle separator algorithm
(Theorem 5.8.1) to separate G into two parts; an interior subgraph G; and an
exterior subgraph Gy. The edges and vertices of the cycle separator C' are the
only ones that belong to both parts. The vertices V, of C are called boundary
vertices. Since C' is a simple cycle, it forms the boundary of a single face both
in Gg and in Gy. The dense distance graph DDG(G;) of G; is the complete
graph on V., where for any w,v, € V. the length of the arc uv is the length of
the u-to-v path in G;. The dense distance graph DDG(G) of G is the union of
the dense distance graphs of its parts.

Lemma 8.0.1. For any u,v € V., the u-to-v distance in G equals the u-to-v
distance in DDG(G).

Problem 8.1. Prove Lemma 8.0.1

Section 8.1 we discuss the Monge property, a special structural property of
dense distance graphs, and some of its algorithmic consequences. In Section 8.3
we describe how to the Monge property is used to implement the Bellman-Ford
algorithm on the dense distance graph in time |V|log|V,.|. This is the main
step in the overall recursive algorithm.

113

114 CHAPTER 8. SHORTEST PATHS WITH NEGATIVE LENGTHS

8.1 Total Monotonicity and the Monge Prop-
erty

A matrix M = (M;;) is totally monotone if for every 4,4’, 4, j' such that i < ¢/,

j <j"and M;; < M,;, we also hae My ; < M.

J J
l =

A 4=

A matrix M = (M;;) is convex Monge (concave Monge) if for every 4,7, j, j
such that i < 7;’, 7 < j/, we have Mij + Mi/j/ > Mij/ + Mi/j (M” + Mi’j’ <
M;; + Myj;). It is immediate that if M is convex Monge then it is totally
monotone. It is also easy to see that the matrix obtained by transposing M is
also totally monotone.

8.1.1 Boundary distances and the Monge Property

Consider one of the subgraphs G; (i € {1,2}). Since all boundary vertices
lie on the boundary of a single face of G;, there is a cyclic clockwise order
V1,2, ..., vy, on the vertices in V.. Let A be the |V,| x V.| weighted incidence
matrix of DDG(G;). That is, Ags equals to the vg-to-v, distance in G;. We
define the upper triangle of A to be the elements of A on or above the main
diagonal. More precisely, the upper triangle of A is the portion {Age : k < £}
of A. Similarly, the lower triangle of A consists of all the elements on or below
the main diagonal of A.

Lemma 8.1.1. For any four indices k, k', 0, ' such that either Ayp, Ager, Apre
and A are all in A’s upper triangle, or are all in A’s lower triangle (i.e.,
either 1 <k <Kk <<V <|V]orl<{t<V <k<Ek <|V), the convex
Monge property holds:

Age + Agrer 2 Ager + Aprs.

Proof. Consider the case 1 < k < k' < < < |V, as in Fig. 8.1. Since G; is
planar, any pair of paths in G; from k to £ and from %’ to ¢/ must cross at some
node w of G;. Let §;[u, v] denote the u-to-v distance in G; for any two vertices

8.1. TOTAL MONOTONICITY AND THE MONGE PROPERTY 115

Figure 8.1: Vertices k < k' < ¢ < ¢ in clockwise order on the boundary vertices.
Paths from % to ¢ and from &’ to ¢’ must cross at some node w. This is true
both in the internal and the external subgraphs of G

u,v of G;. Note that Ags = J;[vk,ve]. We have

Ap o+ Ap v 0; [V, ve] + 0;[vrr, ver]
= (0;[vk, w] + d;[w, ve])

+ (0;[vgr, w] + §;[w, ver])
= (O[vg, w] + §;[w, ve])
+ (0i[vir , w] + &;[w, ve])
0i[vi, ver] + difvis, ve]
Apo + A .

The case (1 <<V <k <k <|V.) is similar. O

8.1.2 Finding all column minima of a Monge matrix

We will be interested in computing all column minima of a Monge matrix A.
Let n denote the number of rows (or columns) of A, and assume A has the
convex Monge property. For a subset R of the rows of A, the lower envelope of
the rows R of A is the real-valued function g on the integers in [1,n] defined
by Er(j) = minier Ajj.

Lemma 8.1.2. Let A be a convex Monge matriz. For any subset R of the rows
of A, the function argmin;cpA;; is monotonically non-increasing.

Proof. Suppose k = argmin;cpA;p. Then, for ¥’ > k, Ape < Ape. Since A is
convex Monge, Age + Aprgr > Ape + Aprg. Therefore, for £/ > £, Aprgr > Ager,
so argmin;c p A < k. O

116 CHAPTER 8. SHORTEST PATHS WITH NEGATIVE LENGTHS

A breakpoint of g is a pair of integers (k,) such that k = argmin;c 5 A;p,
and k # argmin;cpA;41). For k = argmin,cpA;,, we always consider (k,n)
to be a breakpoint of €. For notational convenience we also consider the pair
(L,0) as a trivial breakpoint. If B = (k1,¢1), (ke,¥f2), ... are the breakpoints of
the lower envelope of A, ordered such that k; < ko < ..., then the minimum
elements in each column in the range (¢;_1,¢;] is at row k;.

Problem 8.2. Give a tight bound (i.e., matching upper and lower bounds) on
the number of breakpoints of the lower envelope of a convexr Monge matriz

We focus our attention on finding the breakpoints of the lower envelope of
A, since, given the breakpoints, all column minima can be recovered in O(n)
time. Lemma 8.1.2 suggests the following procedure for finding the breakpoints
of the lower envelope of a convex Monge matrix A. The procedure maintains
the lower envelope of an increasingly larger prefix R of the rows of A. Initially
R consists of just the first row of A, and the breakpoints of g are just (L,0)
and (1,n). Let B = (k1,01), (k2,¢2),... be the non-trivial breakpoints of the
lower envelope of the first i rows of A, ordered such that ky > ko > Note
that, by Lemma 8.1.2, this implies ¢; < ¢ < To obtain the breakpoints of
the lower envelope of the first i + 1 rows of A, the procedure compares A1)y,
and Ay, for increasing values of j, until it encounters an index j such that
Agiy1ye; > Akje;- By Lemma 8.1.2, and by the definition of breakpoints, this
implies that

1. Forall £ > £;, & iy1)(0) = Ep..qy() #i+ 1, and
2. For all ¢ S gj—l, ((/‘[1._.“,1] (E) =14+ 1.

Hence, the lower envelope of the first i + 1 rows of A consists of a suffix of the
breakpoints of B starting at (k;,¢;) plus, perhaps, a new breakpoint (i1, £) for
some £ € [(;_1,¢;). The exact column ¢ where the new breakpoint occurs can
be found in by binary search for the largest column £ such that A1y, < Ag; e

We summarize the procedure in the following theorem

Theorem 8.1.3. There exists a procedure that computes the breakpoints of the
lower envelope of a n-by-n convex Monge matriz in O(nlogn) time.

Proof. We have already described the procedure. To analyze the running time,
observe that a breakpoint at row i is created at most once, at the iteration that
adds row i to the set R. Hence, the total number of breakpoints considered
by the procedure is O(n). At each iteration, each comparison takes constant
time, and all but the last comparison of the iteration eliminate one existing
breakpoint. Hence the time required for all comparisons at all iterations is
O(n). Finally, the binary search at each iteration takes O(logn) time. Hence
the total running time of the procedure is O(nlogn). O

8.2. THE ALGORITHM 117

8.1.3 Finding all the column minima of a triangular Monge
matrix

The procedure of Theorem 8.1.3 can be easily adapted to find the breakpoints
of the lower envelope of triangular convex Monge matrix. The procedure needs
to be adapted since Lemma 8.1.2 does not apply to triangular matrices.

Problem 8.3. Give a tight bound (i.e., matching upper and lower bounds) on
the number of breakpoints of the lower envelope of a convex Monge triangular
matrix

Consider first an upper triangular convex Monge matrix. At the beginning of
iteration ¢ the breakpoints of the lower envelope of the submatrix that consists
of the first s — 1 rows and all columns are known. Note that, since the matrix is
upper triangular, no row greater than ¢ — 1 contributes to the lower envelope of
the first 4 — 1 columns. It follows that the breakpoints in the first ¢ — 1 columns
have already been computed before iteration i, and can be disregarded for the
remainder of the procedure. On the other hand, the submatrix defined by the
first ¢ rows and columns with index at least i is rectangular, so Lemma 8.1.2
does apply. Therefore, the procedure correctly computes the breakpoints of the
lower envelope of this rectangular matrix.

For lower triangular matrices, a symmetric procedure that handles the rows
in reverse order should be used.

Problem 8.4. Adjust the procedure of Theorem 8.1.3 to work with lower trian-
gular conver Monge matrices.

8.2 The Algorithm

We now turn back to the description of the algorithm for computing shortest
paths in the presence of negative arc lengths and no negative length cycles. It
consists of five stages. The first four stages alternate between working with
negative lengths and working with only positive lengths. Let r be an arbitrary
boundary vertex.

Recursive call: The first stage recursively computes the distances from r within
G, for i = 0,1. The remaining stages use these distances in the computa-
tion of the distances in G.

Intra-part boundary-distances: For each graph G; the algorithm uses the
MSSP algorithm of Chapter 7 to compute all distances in G; between
boundary vertices. This takes O(nlogn) time.

Single-source inter-part boundary distances: The algorithm uses a fast
implementation of Bellman-Ford in the dense distance graph of G to com-
pute the distances in G from r to all other boundary vertices. DDG(G) has
O(4y/n) vertices, so the number of iterations of Bellman-Ford is O(logn).
Each iteration consists of relaxing all the edges DDG(G). Because for each

118

CHAPTER 8. SHORTEST PATHS WITH NEGATIVE LENGTHS

Figure 8.2: A graph G and a decomposition using a cycle separator into an
external subgraph Gy (in gray) and an internal subgraph G; (in white). Only
boundary vertices are shown. r and v are boundary vertices. The double-lined
blue path is an r-to-v shortest path in G;. The dashed red path is an r-to-v
shortest path in G.

G;, the upper and lower triangles of DDG(G;) each has the Monge prop-
erty, all of the edges can be relaxed in O(y/nlogn) time. Thus this step
is implemented in O(nlogn) time. This step is described in Section 8.3.

Single-source inter-part distances: For each G;, the distances obtained in

the previous stages are used, in a Dijkstra computation, to compute the
distances in G from r to all the vertices of G;. Dijkstra’s algorithm requires
the lengths in G; to be non-negative, so the recursively computed distances
are used as a consistent price vector. This stage takes O(nlogn) time.
(This stage can actually be implemented in O(n) using the algorithm of
Chapter 6. This however does not change the overall running time of the
algorithm.) This stage is described in Section 8.4

Rerooting single-source distances: The algorithm has obtained distances

in G from r. In the last stage these distances are used as a consistent
price vector to compute, again using Dijkstra’s algorithm, distances from
s in G. This stage also requires O(nlogn) time.

def SSSP(G, 5):

ISV O

pre: G is a directed embedded graph with arc-lengths.

s is a vertex of G.
post: returns a table d giving distances in G from s to all vertices of G
if G has < 2 vertices, the problem is trivial; return the result
find a cycle separator C' of G with O(y/n) boundary vertices
let Go,G1 be the external and internal parts of G with respect to C
for i = 0,1: let d; = SSSP(G;,r)

8.3. COMPUTING SINGLE-SOURCE INTER-PART BOUNDARY DISTANCES119

Figure 8.3: The solid blue path is an r-to-v shortest path in G. It can be
decomposed into four subpaths. The subpaths P, and P; (P, and Py) are
shortest paths in Gy (Go) between boundary vertices. The r-to-v shortest paths
in Gy and G are shown in gray in the background.

5 fori=0,1:
use d; as input to the multiple-source shortest-path algorithm
to compute a table ¢; such that d;[u, v] is the u-to-v distance
in G; for every pair u,v of boundary vertices
6 use dp and d; to compute a table B such that B[v] is the r-to-v
distance in G for every boundary vertex v
7 fori=0,1:
use tables d; and B, and Dijkstra’s algorithm to compute a table d;
such that d;[v] is the r-to-v distance in G for every vertex v of G;
8 define a price vector ¢ for G such that ¢[v] is the r-to-v distance in G:
dglv] if v belongs to Gp
(b[v} = / :
di[v] otherwise
9 use Dijkstra’s algorithm with price vector ¢ to compute a table d
such that d[v] is the s-to-v distance in G for every vertex v of G

8.3 Computing Single-Source Inter-Part Bound-
ary Distances

We now describe how to efficiently compute the distances in G from r to all
boundary vertices (Line 6). The algorithm computes the from-r distances in G
by computing the from-r distances in the dense distance graph DDG(G). For
i = 1,2, the edge lengths of the dense distance graph of G; have already been
computed and stored in d; in the previous step (Line 5).

Theorem 8.3.1. Let G be a directed graph with arbitrary arc-lengths. Let C
be a cycle separator in G and let Gy and G1 be the external and internal parts

120 CHAPTER 8. SHORTEST PATHS WITH NEGATIVE LENGTHS

of G with respect to C. Let §g and 61 be the all-pairs distances between vertices
in V. in Gg and in G respectively. Let r € V. be an arbitrary boundary vertex.
There exists an algorithm that, given dg and d1, computes the from-r distances
in G to all vertices of C in O(|V.|?log(|V|)) time and O(|V,|) space.

Proof. Consider the Bellman-Ford algorithm on DDG(G). There are |V,| ver-
tices, so the number of iterations is |V.|. In iteration j Bellman-Ford computes
for every v € V¢, the quantity e;[v], which is the length of a shortest r-to-v path
consisting of at most j edges of DDG(G). The following procedure, BOUND-
ARYDISTANCES describes this process in detail.

def BOUNDARYDISTANCES(dg, d1,7)
pre: §; is a table of distances between boundary nodes in G;
r is a boundary vertex
post: returns a table B of from-r distances in G
eo[v] := o0 for all v € V,
eolr] :=0
for j =1,2,3,...,|V]
mingev, {e;-1[w] + dofw, v},
miney, {ej1[w] + 81w, v]} } VeV
B[v] := e}y, |[v] for all v € V,,

e;j[v] := min

(@31 =~ W N =

The correctness of BOUNDARYDISTANCES follows from the fact that it is an
implementation of the Bellman-Ford algorithm.

To complete the proof of Theorem 8.3.1 it remains to show that BOUND-
ARYDISTANCES can be implemented in O(|V,|? - log(|V.|)) time. The number of
iterations in BOUNDARYDISTANCES is |V.|. It therefore suffices to show how to
implement Line 4 in O(|V,|log(|V.|)) time. This is the crux of the algorithm.
Consider the natural clockwise order on the boundary vertices, and regard the
tables J; as square |V.|-by-|V.| matrices. The key observation is that Line 4
can be implemented by computing all column minima of two matrices A% A,
such that the (k,¢) element of A®is A%, = e;_1[vg] + 0;[vk, v¢], and then taking
the minimum of the two values obtained for each column. Since §; stores the
pairwise distances between vertices on a single face of G;, it can be decomposed,
by Lemma 8.1.1, into an upper triangular matrix and a lower triangular matrix,
both of whom are convex Monge. Next note that adding a constant to each row
of a Monge matrix preserves the Monge property. For 1 <k <k </ <{ <|V|
or 1 U<V <k<E |V,

0i (v, ve] + 0i (v, ver] > 0ivk, ver] + i [vr, v
implies

(ej—1[vk] + dilvi, ve]) + (ej—1[vw] + 0i[vpr, vp]) >
(ej—1[vr] + &i[vk, ver]) + (ej—1[vrr] + di[vkr, ve])

8.4. COMPUTING SINGLE-SOURCE INTER-PART DISTANCES 121

Hence each matrix A’ decomposes into a lower and an upper triangular convex
Monge matrices. The algorithm can therefore find all column minima of each A*
by finding all column minima of each of the two triangular matrices comprising
A?. Using the extension of Theorem 8.1.3 to triangular matrices, this can be
done in O(|V;|log(|V,|)) time, as desired. O

8.4 Computing Single-Source Inter-Part Distances

We now describe how to implement Line 7 of SSSP which computes the dis-
tances from r to all other vertices of GG, rather than just to the boundary vertices.
The algorithm does so by computing tables dj and d} where d;[v] is the r-to-v
distance in G for every vertex v of G;. Recall that in Line 4 of SSSP the algo-
rithm had already computed the table d; that stores the r-to-v distance in G;
for every vertex v of G;.

Table d} is computed using a Dijkstra computation, where the distances
of boundary nodes are initialized to their known distances in G (computed in
Line 6 and stored in table B), and using the distances d; as a price vector. By
Lemma 7.1.3, d; is a consistent price vector for G;. The following lemma shows
that this correctly computes the distances in G from r to all vertices of Gj.

Lemma 8.4.1. Let P be an r-to-v shortest path in G, where v € G;. Then
P can be expressed as P = Py Py, where Py is a (possibly empty) shortest path
from r to a node u € V.., and Py is a (possibly empty) shortest path from wu to v
that only visits nodes of G;.

Problem 8.5. Prove Lemma 8.4.1.

8.5 Correctness and Analysis

We now show that at each stage of SSSP, the necessary information has been
correctly computed and stored. The recursive call in Line 4 computes and stores
the from-r distances in G;. The conditions for applying the MSSP algorithm in
Line 5 hold since all boundary vertices lie on the boundary of a single face of G;
and since, by Lemma 7.1.3, the from-r distances in G; constitute a consistent
price vector for G;. The correctness of the single-source inter-part boundary
distances stage in Line 6 and of the single-source inter-part distances stage in
Line 7 was proved in Sections 8.3 and 8.4. Thus, the r-to-v distances in G for
all vertices v of G are stored in df, for v € Gy and in d} for v € G;. Note that
dj and d} agree on distances from r to boundary vertices. Therefore, the price
vector ¢ defined in Line 8 is consistent for G, so the conditions to run Dijkstra’s
algorithm in Step 9 hold, and the from-s distances in G are correctly computed.
This establishes the correctness of SSSP.

To bound the running time of the algorithm we bound the time it takes to
complete one recursive call to SSSP. Let |G| denote the number of nodes in

122 CHAPTER 8. SHORTEST PATHS WITH NEGATIVE LENGTHS

the input graph G, and let |G;| denote the number of nodes in each of its sub-
graphs. Computing the intra-subgraph boundary-to-boundary distances using
the MSSP algorithm takes O(|G;|log|G;|) for each of the two subgraphs, which
is in O(]G|log |G]). Computing the single-source distances in G to the boundary
vertices is done in O(|G|log(|G|)), as shown in Section 8.3. The extension to all
vertices of G is again done in O(|G;|log |G;|) for each subgraph. Distances from
the given source are computed in an additional O(|G|log|G]) time. Thus the
total running time of one invocation is O(|G|log|G|). Therefore the running
time of the entire algorithm is given by

T(lG) = T(Gol) + T(|Gh]) + O(|G|log |G])
= O(|Glog’|G)).

Here we used the properties of the separator, namely that |G;| < 2|G|/3 for
i = 0,1, and that |Go| + |G1] = |G| + O(+/|G]). The formal proof of this

recurrence is given in the following lemma.

Lemma 8.5.1. Let T'(n) satisfy the recurrence T'(n) = T'(n1)+1 (n2)+0(nlogn),
where n < ny +ng <n+4y/n and n; < 27" Then T(n) = O(nlog2 n).

Problem 8.6. Prove Lemma 8.5.1.

We have thus proved that the total running time of SSSP is O(n log? n).
We turn to the space bound. The space required for one invocation is O(|G|).
Each of the two recursive calls can use the same memory locations one after the
other, so the space is given by

S(Gh max{S(|Gol), S(|G1[} + O(|GI)

O(|G|) because max{|Gy|, |G1|} < 2|G|/3.

8.6 Chapter Notes

[Lipton et al., 1979] described an O(n?®/?-time algorithm for the problem. This
algorithm uses small separators, but not the Monge property. [Henzinger et al., 1997]
improved the running time to O(n4/3 log2/3 D, where D is the sum of absolute
values of the lengths. In the early 2000’s, [Fakcharoenphol and Rao, 2006] gave

the first nearly linear O(n log® n)-time algoirthm for the problem, using the
Monge property. The O(n log? n)-time algorithm described in this chapter is the

one by Klein, Mozes and Weimann [Klein et al., 2010]. The fastest algorithm
currently known [Mozes and Wulff-Nilsen, 2010] runs in O(nlog® n/loglogn)
time.

