
Chapter 6

Shortest paths with
nonnegative lengths

In this chapter, we give a linear-time algorithm for computing single-source
shortest paths in a planar graph with nonnegative lengths. The algorithm uses
recursive divisions (discussed in Section 5.9). We start with some basic concepts
about shortest paths in arbitrary graphs.

6.1 Shortest-path basics: path-length property
and relaxed and tense darts

Let G be a directed graph with dart-lengths given by a dart-vector c. We say a
vertex vector d has the path-length property with respect to c if, for each vertex
v, d[v] is the length (with respect to c) of some s-to-v path (not necessarily the
shortest).

We say a dart vw is relaxed with respect c and the vertex vector d if d[w] ≤
d[v] + length(vw). An unrelaxed dart is said to be tense.

Let s be a vertex. If d[s] = 0 and d satisfies the path-length property and
every arc is relaxed then, for each vertex v, d[v] is a length of the shortest s-to-v
path.

A basic step in several shortest-path algorithms is called relaxing a dart.
Suppose d is a vertex vector with the path-length property and dart vw is
tense. Relaxing vw consists of executing

d[w] := length(vw) + d[v]

after which vw is relaxed and d still has the path-length property.

For the case of nonnegative lengths, Dijkstra’s algorithm [Dijkstra, 1959]
generates an ordering of darts to relax so that each dart is relaxed at most
once, after which all dart are relaxed. If the algorithm uses a priority queue,

79

80 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

the running time is O(m log n) where m is the number of arcs (we assume
m ≥ n− 1 since otherwise the graph is disconnected).

6.2 Using a division in computing shortest-path
distances

The shortest-path algorithm operates on a graph equipped with a recursive divi-
sion. The algorithm runs quickly because most queue operations are performed
on smaller queues.

The algorithm has a limited “attention span.” It chooses a region, then
performs a number of steps of Dijkstra’s algorithm (the number depends on
the height of the region), then abandons that region until later. Thus it skips
around between the regions.

To provide intuition, we briefly describe a simplified version of the algo-
rithm. The simplified version runs in O(n log log n) time. Consider an r–division
with r = log4 n. That is, the graph is divided into O(n/ log4 n) regions of size
O(log4 n), each with O(log2 n) boundary vertices. We associate a status, active
or inactive, with each edge. Initialize by deactivating all edges and setting all
node labels d[v] to infinity. Then set the label of the source to 0, and activate
its outgoing edges. Now repeat the following three steps:

Step 1: Select the region containing the lowest-labeled node that has active
outgoing edges in the region.

Step 2: Repeat log n times:

Step 2A: Select the lowest-labeled node v in the current region that has active
outgoing edges in the region. Relax and deactivate all its outgoing
edges vw in that region. For each of the other endpoints w of these
edges, if relaxing the edge vw resulted in decreasing the label of w,
then activate the outgoing edges of w.

Note that applying Dijkstra’s algorithm to the region would entail repeating
Step 2A as many times as there are nodes in the region. Every node would be
selected exactly once. We cannot afford that many executions of Step 2A, since
a single region is likely to be selected more than once in Step 1. In contrast to
Dijkstra’s algorithm, when a node is selected in Step 2A, its current label may
not be the correct shortest-path distance to that node; its label may later be
decreased, and it may be selected again. Since the work done within a region
during a single execution of Step 2 is speculative, we don’t want to do too much
work. On the other hand, we don’t want to execute Step 1 too many times. In
the analysis of this algorithm, we show how to “charge” an execution of Step 1
to the log n iterations of Step 2A.

There is an additional detail. It may be that Step 2A cannot be repeated
log n iterations because after fewer than log n times there are no active outgoing
edges left in the region. In this case, we say the execution of Step 2 is truncated.

6.2. USING ADIVISION IN COMPUTING SHORTEST-PATHDISTANCES81

Since we cannot charge a truncated execution of Step 2 to log n iterations of
Step 2A, we need another way to bound the number of such executions. It turns
out that handling this “detail” is in fact the crux of the analysis. One might
think that after a region R underwent one such truncated execution, since all
its edges were inactive, the same region would never again be selected in Step 1.
However, relax-steps on edges in another region R′ might decrease the label on a
node w on the boundary between R and R′, which would result in w’s outgoing
edges being activated. If w happens to have outgoing edges within R, since
these edges become active, R will at some later point be selected once again in
Step 1.

This problem points the way to its solution. If R “wakes up” again in
this way, we can charge the subsequent truncated execution involving R to the
operation of updating the label on the boundary node w. The analysis makes use
of the fact that there are relatively few boundary nodes to bound the truncated
executions. Indeed, this is where we use the fact that the regions have small
boundaries.

6.2.1 The algorithm

We assume without loss of generality that the input graph G is directed, that
each node has at most two incoming and two outgoing edges, and that there is
a finite-length path from s to each node. We assume that the graph is equipped
with a recursive division.

The algorithm maintains a vertex vector d with the path-length property.
For each region R of the recursive division of G, the algorithm maintains

a priority queue Q(R). If R is nonatomic, the items stored in Q(R) are the
immediate subregions of R. For an atomic region R(uv), Q(R(uv)) consists
of only one item, the single arc uv contained in R(uv); in this case, the key
associated with the arc is either infinity or the label d[u] of the tail of the arc.

The algorithm is intended to ensure that for any region R, the minimum
key in the queue Q(R) is the minimum distance label d[v] over all arcs vw in R
that need to be processed. We make this precise in Lemma 6.3.3. This idea of
maintaining priority queues for nested sets is not new, and has been used, e.g.
in finding the kth smallest element in a heap [Frederickson, 1993]. We assume
the priority queue data structure supports the operations

• minItem(Q), which returns the item in Q with the minimum key,

• minKey(Q), which returns the key associated with minItem(Q)

• updateKey(Q, x, k), which updates the key of x to k (x must be an item of
Q) and returns a boolean indicating whether the update caused minKey(Q)
to decrease.

We indicate an item is inactive by setting its key to infinity. Items go from
inactive to active and back many times during the algorithm. We never delete
items from the queue. This convention is conceptually convenient because it

82 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

avoids the issue of having to decide, for a given newly active item, into which
of the many priority queues it should be re-inserted.

The algorithm uses parameters αi to specify an “attention span” for each
level of the recursive division. We will specify their values in Section 6.5. The
algorithm consists of the following two procedures.

def Process(R)
pre: R is a region.

1 if R contains a single edge uv,
2 if d[v] > d[u] + length(uv),
3 d[v] := d[u] + length(uv)
4 for each outgoing edge vw of v, call Update(R(vw), vw,d[v]).
5 updateKey(Q(R), uv,∞).
6 else (R is nonatomic)
7 repeat αheight(R) times or until minKey(Q(R)) is infinity:
8 R′ := minItem(Q(R))
9 Process(R′)
10 updateKey(Q(R), R′,minKey(Q(R′))).

def Update(R, x, k)
: pre: R is a region, x is an item of Q(R), and k is a key value.

1 updateKey(Q(R), x, k)
2 if the updateKey operation reduced the value of minKey(Q(R)) then
3 Update(parent(R), R, k).

To compute shortest paths from a source s, proceed as follows. Initial-
ize all vertex-labels and keys to infinity. Then assign the label d[s] := 0,
and for each outgoing arc sv, call Update(R(sv), sv, 0). Then repeatedly call
Process(RG), where RG is the region consisting of all of G, until the call results
in minKey(Q(RG)) being infinity. Since the vertex-labels d are only updated
by steps in which arcs are relaxed, the vertex-labels satisfy the path-length
property throughout the algorithm’s execution. In the next section, we show
that, when the algorithm terminates, all arcs are relaxed. It follows that the
vertex-labels give distances from s.

We define an entry vertex of a region R as follows. The only entry vertex of
the region RG is s itself. For any other region R, v is an entry vertex if v is a
boundary vertex of R such that some arc vw belongs to R.

When the algorithm processes a region R, it finds shorter paths to some of
the vertices of R and so reduces their labels. Suppose one such vertex v is a
boundary vertex of R. The result is that the shorter path to v can lead to shorter
paths to arcs in a neighboring region R′ for which v is an entry vertex. In order
to preserve the property that the minimum key of Q(R′) reflects the labels of
vertices of R′, therefore, the algorithm might need to update Q(R′). Updating
priority queues of neighboring regions is handled by the Update proedure. The

6.3. CORRECTNESS 83

reduction of minKey(Q(R′)) (which can only occur as a result of the reduction
of the label of an entry vertex v) is a highly significant event for the analysis.
We refer to such an event as a foreign intrusion of region R′ via entry vertex v.

Lemma 6.2.1. Let R be a region. Suppose there are two foreign intrusions of
R via v, one at time t1 and one at time t2, where t1 < t2. Then minKey(Q(R))
is greater at time t1 than at time t2.

Proof. d[v] must get smaller for the second intrusion to count.

6.3 Correctness

We say that an arc uv is active if the key of uv in Q(R(uv)) is finite. To prove
that every arc is relaxed at termination, we show that (a) if an arc is inactive,
then it is relaxed, and (b) at termination all arcs are inactive.

Lemma 6.3.1. If an arc uv is inactive then it is relaxed (except during Line 4).

Proof. The lemma holds just before the first call to Process since at that point
every node but s has label infinity, and every outgoing arc of s is active. The
algorithm only deactivates an arc uv, i.e., uv is assigned a key of ∞ in Line 5,
just after the arc is relaxed.

An arc vw could become tense when the labels of its endpoints change. Note
that labels never go up. The label of v might go down in Line 4, but in the
same step the algorithm calls Update(R(vw), vw,d[v]) for each outgoing arc
vw of v. In Line 1 of Update, the key of vw is updated to a finite value, so vw
is again active.

Lemma 6.3.2. The key of an active arc vw is d[v] (except during Line 4).

Proof. Initially all labels and keys are ∞. Whenever a label d[v] is assigned a
value k (either in the initialization, where v = s, or in Line 4), Update(R(vw), vw, k)
is called for each outgoing arc vw. The first step of Update(R, v, k) is to update
the key of vw to k.

Next we show that the queues are, in a sense, consistent. The region of an
invocation A of Process is simply the region that was the argument to that
invocation of Process. The most recent invocation of Process that has not
yet returned is called the current invocation, and that invocation’s region is
called the current region.

Lemma 6.3.3. For any region R that is not an ancestor of the current region,
the key associated with R in Q(parent(R)) is the min key of Q(R).

Proof. At the very beginning of the algorithm, all keys are infinity. Thus in
this case the lemma holds trivially. Every time the minimum key of some queue
Q(R) is changed in Line 1 of Update, a recursive call to Update in Line 2
ensures that the key associated with R in Q(parent(R)) is updated.

84 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

We must also consider the moment when a new region becomes the current
region. This happens upon invocation of the procedure Process, and upon
return from Process.

• When Process(R) is newly invoked, the new current region R is a child
of the old current region, so Lemma 6.3.3 applies to even fewer regions
than before; hence we know it continues to hold.

• When Process(R′) returns in step 9, the parent R of R′ becomes current.
Hence at that point Lemma 6.3.3 applies to R′. Note, however, that
immediately after the call to Process(R′), the calling invocation updates
the key of R′ in Q(R) to the value minKey(Q(R′)).

Corollary 6.3.4. For any region R that is not an ancestor of the current region,

minKey(Q(R)) = min{d[v] : vw is an active arc contained in R} (6.1)

Proof. By induction on the height of R, using Lemma 6.3.3.

The algorithm terminates when Q(RG) becomes infinite. At this point,
according to Corollary 6.3.4, G contains no active arc, so, by Lemma 6.3.1, all
arcs are relaxed. Since the vertex-labels satisfy the path-length property, it
follows that they are shortest-path distances. We have proved the algorithm is
correct.

6.4 The Dijkstra-like property of the algorithm

Because of the recursive structure of Process, each initial invocation Process(RG)
is the root of a tree of invocations of Process and Update, each with an as-
sociated region R. Parents, children, ancestors, and descendants of invocations
are defined in the usual way.

In this section, we give a lemma that is useful in the running-time analysis.
This lemma is a consequence of the nonnegativity of the lengths; it is analogous
to the fact that in Dijkstra’s algorithm the labels are assigned in nondecreasing
order.

For an invocation A of Process on region R, we define start(A) and end(A)
to be the values of minKey(Q(R)) just before the invocation starts and just
after the invocation ends, respectively.

Lemma 6.4.1. For any invocation A, and for the children A1, . . . , Ap of A,

start(A) ≤ start(A1) ≤ start(A2) ≤ · · · ≤ start(Ap) ≤ end(A). (6.2)

Moreover, every key assigned during A is at least start(A).

6.5. ACCOUNTING FOR COSTS 85

Proof. The proof is by induction on the height of A. If A’s height is 0 then it
has an atomic region R(uv). In this case the start key is the value of d[u] at
the beginning of the invocation. The end key is infinity. The only finite key
assigned (in Update) is d[u]+length(uv), which is at least d[u] by nonnegativity
of edge-lengths. There are no children.

Suppose A’s height is more than 0. In this case it invokes a series A1, . . . , Ap
of children. Let R be the region of A. For i = 1, . . . , p, let ki be the value of
minKey(Q(R)) at the time Ai is invoked, and let kp+1 be its value at the end of
Ap. Line 8 of the algorithm ensures ki = start(Ai) for i ≤ p. By the inductive
hypothesis, every key assigned by Ai is at least start(Ai), so ki+1 ≥ ki. Putting
these inequalities together, we obtain

k1 ≤ k2 ≤ · · · ≤ kp+1

Note that k1 = start(A) and kp+1 = end(A). Thus (6.2) holds and every key
assigned during A is at least start(A).

6.5 Accounting for costs

Now we begin the running-time analysis. The time required is dominated by
the time for priority-queue operations. Lines 8 and 10 of Process involve
operations on the priority queue Q(R). We charge a total cost of log |Q(R)| for
these two steps. Similarly, we charge a cost of log |Q(R)| for Line 3 of Update.
Line 5 performs an operation on a priority queue of size one, so we only charge
one for that operation. Our goal is to show that the total cost is linear.

To help in the analysis, we give versions of the procedures Update and
Process that have been modified to keep track of the costs and to keep track
of foreign intrusions. Note that the modifications are purely an expository
device for the purpose of analysis; the modified procedures are not intended to
be actually executed, and in fact one step of the modified version of Process
cannot be executed since it requires knowledge of the future!

Amounts of cost are passed around by Update and Process via return
values and arguments. We think of these amounts as debt obligations. These
debt obligations travel up and down the forest of invocations, and are eventually
charged by invocations of Process to pairs (R, v) where R is a region and v is
an entry vertex of R.

The modified version of Update, given below, handles cost in a simple way:
each invocation returns the total cost incurred by it and its proper descendants
(in Line 3 if there are proper descendants and in Line 3a if not).

The modified Update has another job to do as well: it must keep track of
foreign intrusions. There is a table entry[·] indexed by regions R. Whenever the
reduction of the vertex-label d[v] causes minKey(Q(R)) to decrease, entry[R] is
set to v in step 2a. Initially the entries in the table are undefined. However, for
any region R, the only way that minKey(Q(R)) can become finite is by an in-
trusion. We are therefore guaranteed that, at any time at which minKey(Q(R))
is finite, entry[R] is an entry vertex of R.

86 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

def Update(R, x, k, v)
pre: R is a region, x is an item of Q(R), k is a key value,

and v is a boundary vertex of R.
1 updateKey(Q(R), x, k, v)
2 if the updateKey operation reduced the value of minKey(Q(R)) then
2a entry[R] := v
3 return log |Q(R)|+ Update(parent(R), R, k, v).
3a else return log |Q(R)|

The cost of the invocation Update(R, x, k, v) is log |Q(R)| because of the updateKey
operation in step 1.

We now turn to the modified Process procedure. An invocation takes an
additional argument, debt, which is a portion of the cost incurred by ancestor
invocations. We refer to this amount as the debt inherited by the invocation.

Let R be the invocation’s region. If R is atomic, the invocation’s debt is
increased by the cost incurred by calls to Update, and then by 1 to account
for the updateKey operation on the single-element priority queue.

If R is not atomic, the invocation will have some children, so can pass some
of its debt down to its children. Since the parent invocation expects to have
αheight(R) children, it passes on to each child

• a 1/αheight(R) fraction of the parent’s inherited debt, plus

• the log |Q(R)| cost the parent incurred in selecting the child’s region from
the priority queue.

The parent uses a variable credit to keep track of the amount of its inherited
debt that it has successfully passed down to its children. If the parent has
αheight(R) children, the parent’s total credit equals its inherited debt. If not, we
say the parent invocation is truncated.

Lemma 6.5.1. A nontruncated invocation sends to its children all the debt it
inherits or incurs.

Debts also move up the tree. The parent invocation receives some debt from
each child. The parent adds together

• the debt received from its children (upDebt) and

• the amount of inherited debt for which it has not received a credit (zero
unless the parent is truncated)

to get the total amount the parent owes. The parent then either passes that
aggregate debt to its parent or pays off the debt itself by withdrawing from
an account, the account associated with the pair (R, v) where v is the value of
entry[R] at the time of the invocation (step 10d).

Because of Lemma 6.5.1, as debt moves up the tree, no new debt is added
by nontruncated invocations of Process.

6.5. ACCOUNTING FOR COSTS 87

def Process(R,debt)
pre: R is a region.

1 if R contains a single edge uv,
2 if d[v] > d[u] + length(uv),
3 d[v] := d[u] + length(uv)
4 for each outgoing edge vw of v, debt+ = Update(R(vw), vw,d[v], v).
5 updateKey(Q(R), uv,∞).
5a debt+ = 1
6 else (R is nonatomic)
6a upDebt:= 0, credit:=0
7 repeat αheight(R) times or until minKey(Q(R)) is infinity:
8 R′ := minItem(Q(R))
8a credit+ = debt/αheight(R)

9 upDebt+ = Process(R′,debt/αheight(R) + log |Q(R)|)
10 updateKey(Q(R), R′,minKey(Q(R′))).
10a debt+ = upDebt− credit
10b if minKey(Q(R)) will decrease in the future,
10b return debt
10c else (this invocation is stable)
10d pay off debt by withdrawing from account of (R, entry[R])
10e return 0

We say an invocation A of Process is stable if, for every invocation B > A,
the start key of B is at least the start key of A. If an invocation is stable, it pays
off the debt by withdrawing the necessary amount from the account associated
with (R, entry[R]). If not, it passes the debt up to its parent. The following
theorem is proved in Section 6.6

Theorem 6.5.2 (Payoff Theorem). For each region R and entry vertex v of R,
the account (R, v) is used to pay off a positive amount at most once.

Any invocation whose region is the whole graph is stable because there are
no foreign intrusions of that region. Therefore such an invocation never tries to
pass any debt to its nonexistent parent. We are therefore guaranteed that all
costs incurred by the algorithm are eventually charged to accounts.

The total computational cost depends on the parameters r̄ = (r0, r1, r2, . . .)
of the recursive r̄-division and on the parameters α0, α1, . . . that govern the
number of iterations per invocation of Process. For now, we define the latter
parameters in terms of the former parameters; later we define the former. Define
αi = 4 log ri+1

3 log ri
.

Lemma 6.5.3. Each invocation at height i inherits at most 4 log ri+1 debt.

Proof. By reverse induction on i. Each top-level invocation inherits no debt.
Suppose the lemma holds for i, and consider a height-i invocation. By the
inductive hypothesis, it inherits at most 4 log ri+1 debt, so it passes down to

each child a debt of at most 4 log ri+1

αi
+ log ri. The choice of αi ensures that this

is 4 log ri.

88 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

Define βij = αiαi−1 . . . αj+1 for i > j. βii is defined to be 1, and for i < j,
we define βij to be zero.)

Lemma 6.5.4. A Process invocation of height i has at most βij descendant
Process invocations of height j.

Debt incurred by the algorithm by a step of Process is called process debt.

Lemma 6.5.5. For each height-i region R and boundary vertex x of R, the
amount of process debt payed off by the account (R, x) is at most

∑
j≤i βij4 log rj+1.

Proof. By the Payoff Theorem, this account is used at most once. Let A be
the invocation of Process that withdraws the payoff from that account. Each
dollar of process debt paid off by A was sent back to A from some descendant
invocation who inherited or incurred that dollar of process debt. Thus, to
account for the total amount of process debt paid off by A, we consider each of
its descendant invocations. By Lemma 6.5.4, A has βij descendants of height j,
and each such descendant inherited or incurred process debt of at most 4 log rj+1

dollars, by Lemma 6.5.3.

Cost incurred by the algorithm by a step of Update is called update debt.
The event (in Line 3 of Process) of reducing a vertex v’s label d[v] initiates a
chain of calls to Update in Line 4 for each outgoing arc vw. We say the debt
incurred is on behalf of v.

Lemma 6.5.6. If Update is called on the parent of region R during an invo-
cation A of Process then R is not the region of A.

Proof. LetRA be the region ofA. Recall that start(A) is the value of minKey(Q(RA))
just before A begins. By Lemma 6.4.1, every key assigned during A is at least
start(A).

Consider a chain of Update calls initiated by the reduction of the label of
vertex v. By the condition in Line 2 of Process and the condition in Line 2 of
Update, in order for Update to be called on the parent of R, that label must
have been less than the value of minKey(Q(R)). This shows R 6= RA.

For a vertex v, define

height(v) = max{j : v is a boundary vertex of a height-j region}
Corollary 6.5.7. A chain of calls to Update initiated by the reduction of the
label of v has total cost at most

∑
k≤height(v)+1 log rk.

Proof. Let A0 be the invocation of Process during which the initial call to Up-
date was made, and let R(uv) be the (atomic) region of A0. Consider the chain
of calls to Update, and let

R(vw)=R0, R1, . . . , Rp

be the corresponding regions. Note that height(Rj) = j. The cost of call j is
log |Q(Rj)|, which is at most log rj . SinceRp−1 contains vw but (by Lemma 6.5.6)
does not contain uv, v is a boundary vertex of Rp−1, so p ≤ height(v) + 1.

6.6. THE PAYOFF THEOREM 89

6.6 The Payoff Theorem

In this section, we prove the Payoff Theorem, repeated here for convenience:

Payoff Theorem (Theorem 6.5.2): For each region R and entry
vertex v of R, the account (R, v) is used to pay off a positive amount
at most once.

In this section, when we speak of an invocation, we mean an invocation of
Process. We define the partial order ≤ on the set of invocations of Process
as follows: A ≤ B if A and B have the same region, and A occurs no later than
B. We say in this case that A is a predecessor of B. We write A < B if A ≤ B
and A 6= B.

As we remarked earlier, the only way minKey(Q(R)) can decrease is if there
is a foreign intrusion into R. We restate this as follows.

Lemma 6.6.1. Let B be an invocation with region R. Suppose that between time
t and the time B starts, there are no foreign intrusions of R. Then start(B) is
at least the value of minKey(Q(R)) at time t.

Lemma 6.6.2. Suppose A < B are two invocations such that no foreign intru-
sion occurs between A and B and such that B is stable. Then every child of A
is stable.

Proof. Let A′ be a child of A, and let C ′ be any invocation such that A′ < C ′.
If we can prove

start(A′) ≤ start(C ′) (6.3)

then it will follow that A′ is stable. Let C be the parent invocation of C ′ (so
the region of C ′ is R). If C = A, then (6.3) follows from Lemma 6.4.1.

Assume therefore that C > A. It follows from Lemma 6.4.1 that start(A′) ≤
end(A) and that start(C) ≤ start(C ′), so it suffices to show end(A) ≤ start(C).
There are two cases.

• Case 1: C ≤ B . In this case, end(A) ≤ start(C) by Lemma 6.6.1.

• Case 2: C > B. In this case, end(A) ≤ start(B) follows by Lemma 6.6.1,
and start(B) ≤ start(C) follows by the stability of B, so end(A) ≤
start(C).

Now we can prove the Payoff Theorem, which states that each pair (R, v) is
charged a positive amount at most once.

If (R, v) is never charged to, we are done. Otherwise, let A be the earliest
invocation that pays off a positive amount from the account (R, v) in step 10d.
Then R is the region of A, v is the value of entry[R] at the time of A, and A is
stable. Let t1 be the time when entry[R] was last set before A.

Assume for a contradiction that there is an invocation B such that A < B
and such that B also charges to (R, v). Then v is the value of entry[R] at the

90 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

time of B, and B is stable. Let t2 be the time when entry[R] was last set before
B. If t2 > t1 then, by Lemma 6.2.1, minKey(Q(R)) at time t2 was less than
that at time t1, which in turn was no more than start(A) by Lemma 6.2.1,
contradicting the stability of A.

We conclude that no foreign intrusion of R occurs between A and B. By
Lemma 6.6.2, therefore, every child of A is stable. It follows from step 10e that
every child of A returns a zero debt, so in invocation A the value of upDebt
is zero. Assume for a contradiction that A’s credit does not cover its own
inherited debt. Then A must be a truncated invocation, so end(A) = ∞. By
Lemma 6.6.1, start(B) = ∞, a contradiction. Therefore, A pays off zero, a
contradiction. This completes the proof of the Payoff Theorem.

6.7 Analysis

Let c1, c2 be the constants such that an r-division of an m-arc graph has at
most c1m/r regions, each having at most c2

√
r boundary vertices.

Lemma 6.7.1. Let m be the number of edges of the input graph. For any
nonnegative integer i, there are at most c1c2m/

√
ri pairs (R, x) where R is a

height-i region and x is an entry vertex of R.

Combining this lemma with Lemma 6.5.5, we obtain

Corollary 6.7.2. The total process debt is at most

c1c2
∑

i

m√
ri

∑

j≤i
βij4 log rj+1 (6.4)

Lemma 6.7.3. Let i, j be nonnegative integers, and let R be a region of height
i. The total amount of update debt incurred on behalf of vertices of height at
most j and paid off from accounts {(R, x) : x an entry vertex of R} is at most

c2
√
riβi0

j+1∑

k=0

log rk

Proof. The number of entry vertices x of R is at most c2
√
ri. For each, the Pay-

off Theorem ensures that all the debt paid off from account (R, x) comes from
descendants of a single invocation A of Process. The number of height-0 de-
scendants of A is βi0. For each such level-0 descendant A0, if the corresponding
update debt is on behalf of a vertex of height at most j then by Corollary 6.5.7
the cost is at most

∑j+1
k=0 log rk.

Lemma 6.7.4. The total update debt is at most

∑

i

c1c2
m

ri

√
riβi0

i+1∑

k=0

log rk (6.5)

+
∑

j

c1
m
√
rj

2
∑

i<j

c2
√
riβi0

j+1∑

k=0

log rk (6.6)

6.8. PARAMETERS 91

Proof. To each unit of update debt, we associate two integers: i is the height of
the region R such that the debt is paid off from an account (R, x), and j is the
height of the vertex v on whose behalf the debt was incurred. If i ≥ j, we refer
to the debt as type 1 debt, and if i < j, we refer to it as type 2 debt.

First we bound the type-1 debt. For each integer i, there are at most c1
m
ri

regions R of height i. By Lemma 6.7.3, the total type-1 debt is therefore

∑

i

c1c2
m

ri

√
riβi0

i+1∑

k=0

log rk

Now we bound the type-2 debt. For each integer j, the number of regions of
height j is at most c1

m
rj

and each has at most c2
√
rj entry vertices, so the total

number of vertices of height j is at most c1c2
m√
rj

. For each such vertex v, there

are at most 2 incoming darts uv. Any height-0 invocation of Process that
reduced v’s label involved one of these two darts. For each such dart uv, for
each integer i < j, there is exactly one height-i region R that includes uv. By
Lemma 6.7.3, the total type-2 debt is therefore

∑

j

c1
m
√
rj

2
∑

i<j

c2
√
riβi0

j+1∑

k=0

log rk

6.8 Parameters

In this section, we show that there is a way to choose the parameters r0, r1, r2, . . .
so that the total process cost and the total update cost are O(m).

Problem 6.1. For r0 = 1, r1 = log4m, and r2 = m, show that the total cost is
O(m log logm).

We define r0, r1, . . . inductively by r0 = 1 and rj+1 = 16r
1/6
j . This defines

an increasing sequence such that

log rj+1 = 4r
1/6
j (6.7)

so
log2 rj+1 = 16r

1/3
j (6.8)

Lemma 6.8.1. r
1/6
j ≥ 1.78j for j ≥ 7.

Proof. Define uj = log r
1/6
j . Then log rj+1 = 4 · 2uj and

uj+1 = log r
1/6
j+1 =

1

6
log rj+1 =

1

6
4 · 2uj =

2

3
2uj

A simple induction shows that uj ≥ .838j for j ≥ 7. Since r
1/6
j = 2uj , this

implies the lemma.

92 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

Lemma 6.8.2. The process-debt (6.4) is O(m).

Proof.
∑

i

m√
ri

∑

j≤i
βij4 log rj+1

=
∑

i

m√
ri

∑

j≤i
(4/3)i−j

log ri+1

log rj+1
4 log rj+1 by definition of βij

= 4m
∑

i

r
−1/2
i

∑

j≤i
(4/3)i−j log ri+1

≤ 4m
∑

i

r
−1/2
i c(4/3)i log ri+1 for a constant c

≤ 4cm
∑

i

r
−1/2
i (4/3)i4r

1/6
i

= 16cm
∑

i

r
−1/3
i (4/3)i

which is O(m) by Lemma 6.8.1.

Lemma 6.8.3. The update-debt is O(m).

Proof. First we show that
∑
j r
−1/2
j (4/3)j log2 rj+1 is bounded by a constant c.

(The recurrence relation for rj was chosen to make this true.)
∑

j

r
−1/2
j (4/3)j log2 rj+1 ≤

∑

j

r
−1/2
j (4/3)j16r

1/3
j by (6.8)

=
∑

j

r
−1/6
j (4/3)j

≤
∑

j

1.78−j(4/3)j by Lemma 6.8.1

which is bounded by a constant c.
We also use the fact that

∑i+1
k=0 log rk ≤ c′ log ri+1 for a constant c′.

Next we bound the type-1 debt (6.5).

∑

i

c1c2
m

ri

√
riβi0

i+1∑

k=0

log rk

≤ c1c2m
∑

i

r
−1/2
i βi0c

′ log ri+1

=
∑

i

c1c2c
′mr−1/2i (4/3)i

log ri+1

log r1
log ri+1 by definition of βi0

=
c1c2c

′m
log r1

∑

i

1√
ri

(4/3)i log2 ri+1

≤ c1c2c
′m

log r1
c

6.9. HISTORY 93

Now we bound the type-2 debt (6.6).

∑

j

c1
m
√
rj

2
∑

i<j

c2
√
riβi0

j+1∑

k=0

log rk

≤
∑

j

c1
m
√
rj

2
∑

i<j

c2
√
riβi0 c

′ log rj+1

= 2c1c2c
′m
∑

j

r
−1/2
j log rj+1

∑

i<j

√
ri (4/3)i

log ri+1

log r1
by definition of βi0

≤ 2c1c2c
′m

log r1

∑

j

r
−1/2
j log rj+1 c

′′ r1/2j−1(4/3)j−1 log rj for a constant c′′

≤ 2c1c2c
′c′′m

log r1

∑

j

r
−1/2
j log rj+1 r

1/2
j−1r

1/6
j−1(4r

1/6
j−1) by (6.7) and Lemma 6.8.1

≤ 8c1c2c
′c′′m

log r1

∑

j

r
−1/2
j log rj+1 rj−1

≤ 8c1c2c
′c′′m

log r1

∑

j

r
−1/2
j log2 rj+1

≤ 8c1c2c
′c′′m

log r1
c

Theorem 6.8.4. The shortest-path algorithm runs in O(m) time.

6.9 History

Frederickson [Frederickson, 1987] gave the first shortest-path algorithm for pla-
nar graphs that is faster than the one for general graphs. His algorithm runs in
O(n
√

log n) time. His algorithm used an r-division (a concept he pioneered) to
ensure that most priority-queue operations involved small queues.

Building on these ideas, Henzinger, Klein, Rao, and Subramanian [Henzinger et al., 1997]
gave the linear-time algorithm presented here.

94 CHAPTER 6. SHORTEST PATHS WITH NONNEGATIVE LENGTHS

