
Chapter 10

Single-source, single-sink
max flow

10.1 Flow assignments, capacity assignments, and
feasibility

For an arc vector γ and a dart vector c, we may refer to γ as a flow assignment
and refer to c as a capacity assignment, in which case we say γ is capacity-
respecting with respect to c if γ ≤ c, i.e. if every dart d satisfies γ[d] ≤ c[d].

10.1.1 Negative capacities

Note that the values of c are allowed to be negative. Let γ be a flow assignment
that is capacity-respecting with respect to c, and suppose c[d] < −c for some
dart d and some positive number c. Then γ[d] ≤ −c, so by antisymmetry
γ[rev(d)] ≥ c. Thus a negative capacity can be interpreted as a lower bound on
the reverse dart.

10.2 Circulations

Recall from Section 3.3.5 that a vector in the cycle space of a graph G is called
a circulation in G. Let c be a dart vector. Suppose G is a connected planar
embedded graph, and let f∞ be one of the faces. Recall from Section 4.4.1 that
a circulation θ can be represented as a linear combination

θ =
∑
{ρ[f ]η(f) : f ∈ V (G∗)} (10.1)

or, more concisely, as θ = AG∗ρ, where ρ is a vertex vector of G∗. We refer to
the coefficients ρ[f ] as face potentials.

133



134 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW

10.2.1 Capacity-respecting circulations in planar graphs

We consider the problem of computing a circulation that is capacity-respecting
with respect to a given capacity assignment c. Because capacities can be neg-
ative, the all-zeroes circulation is not necessarily capacity-respecting. We show
a link between face potentials in the primal and price vectors in the dual.

Lemma 10.2.1. Let θ be a circulation of G, and let ρ be a price vector of G∗

such that θ = AG∗ρ. Then the circulation is capacity-respecting with respect to
c iff ρ is a consistent price vector in G∗ with respect to c.

Proof. For every dart d,

c[d]− θ[d] = c[d]− (ρ[headG∗(d)]− ρ[tailG∗(d)])

= c[d]− (c[d]− cρ[d])

= cρ[d]

Therefore the left-hand side is nonnegative iff the right-hand side is nonnegative.

Corollary 10.2.2 (Miller and Naor). Let G be a connected plane graph, and let
c be a capacity function. There is a circulation in G that is capacity-respecting
with respect to c iff the dual G∗ contains no cycle of darts whose length with
respect to c is negative.

Proof. (if) Suppose there is no negative-cost cycle. Let ρ be a from-f∞ distance
vector for some face f∞ of G. By Lemma 7.1.3, ρ is a consistent price vector
for G∗. By Lemma 10.2.1, AG∗ρ is a capacity-respecting circulation.

(only if) Suppose θ is a capacity-respecting circulation. As discussed in
Section 4.4.1, , there exists a face-potential vector ρ such that θ = AG∗ρ. By
Lemma 10.2.1, ρ is a consistent price vector for G∗. By Lemma 7.1.5, G∗ has
no negative-cost cycles.

10.3 st-flows

For nodes s and t, a flow assignment γ is an st-flow if it satisfies conservation
at every node except possibly s and t. The value of an st-flow γ is

∑
{γ[d] : tail of d is s}

One might be tempted to write this sum as a dot-product:

η(s) · γ

However, the dot-product is the sum over all darts, including darts whose tails
are s (darts assigned +1 by η(s)) and darts whose heads are s (darts assigned -1
by η(s)). Therefore the dot-product overcounts the value of γ by a factor of
two.



10.4. MAX LIMITED FLOW IN ST -PLANAR GRAPHS 135

Inner product of arc vectors For this reason, we define the inner product
of two arc vectors as

〈ψ,χ〉 =
1

2
(ψ · χ) (10.2)

With this definition, the value of an st-flow γ is 〈η(v),γ〉.

Max st-flow and max limited st-flow Max st-flow is the following prob-
lem: given a graph G with a capacity assignment c, and given vertices s, t,
compute an st-flow whose value is maximum. Ordinarily the capacity assign-
ment is assumed to be nonnegative.

In a slight variant, L-limited max st-flow, one is additionally given a number
L, and the goal is to compute an st-flow whose value is maximum subject to the
value being at most L. If L is assigned an upper bound on the maximum value
of an st-flow, e.g. the sum of capacities of the darts whose tail is s, the limit
has no effect. This shows that ordinary max-flow can be reduced to limited
max-flow. (The reverse reduction is also not difficult.)

Difference between st-flows

Lemma 10.3.1. For two st-flows φ1 and φ2 with the same value, the difference
φ1 − φ2 is a circulation.

residual capacities Given a capacity assignment c and an arc vector γ, the
residual capacity assignment cγ is defined as

c− γ
Lemma 10.3.2. For any st-flow γ and capacity function c, if γ′ is an st-flow
that satisfies the residual capacity function cγ then γ + γ′ satisfies the original
capacity function c

saturated darts We say a dart d is saturated by γ with respect to c if
γ[d] = c[d]. Note that a dart that is saturated by γ with respect to c has zero
residual capacity.

Lemma 10.3.3. For any st-flow γ, if every s-to-t path contains a saturated
dart then γ is a maximum st-flow.

10.4 Max limited flow in st-planar graphs

10.4.1 st-planar embedded graphs and augmented st-planar
embedded graphs

A planar embedded graph G with an edge e having endpoints s and t is called
an augmented st-planar embedded graph. The graph obtained from this graph
by deleting e is called an st-planar graph. Equivalently, an st-planar embedded
graph is a graph in which there is a face containing both s and t. An st-planar
graph is the underlying graph of an st-planar embedded graph.



136 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW

10.4.2 The set-up

We consider the problem of finding a limited maximum st-flow in an st-planar
graph with given nonnegative capacities. Let G be an augmented st-planar
graph, let e be the edge with endpoints s and t, let c be the corresponding
capacity assignment (where each dart of the added edge has zero capacity), and
let L be the limit.

Let d̂ be the dart of e with tailG(d̂) = t, and let f∞ = tailG∗(d̂). Let c′ be a

capacity assignment that differs from c only in that c′[d̂] = L.

From price vectors to circulations Consider the function

ρ 7→ AG∗ρ

whose domain is the set of price vectors ρ with ρ[f∞] = 0. Because the columns
of AG∗ (other than the column for f∞) form a basis for the cycle space of G,
every circulation in G is the image of exactly one such price vector. Therefore
this function is a bijection from such price vectors to circulations.

Let us further restrict the domain to price vectors that are consistent with
respect to c′. By Lemma 10.2.1, the function is still a bijection, and the co-
domain consists of circulations that are capacity-respecting with respect to c′.

From circulations to st-flows Consider the function suppresse(θ) that maps
a circulation θ to the flow assignment γ such that

γ[d] =

{
0 if d is a dart of e
θ[d] otherwise

Then γ is an st-flow whose value equals θ[d̂] (which equals −θ[rev(d̂)]. Further-
more, any such st-flow is the image of some circulation. Therefore this function
is a bijection from circulations to st-flows.

Let us further restrict the domain to circulations θ that are capacity-respecting
with respect to c′. Then the function remains a bijection, and its co-domain
consists of st-flows that are capacity-respecting with respect to c and have value
at most L.

From price vectors to st-flows By composing the two functions, we obtain
a bijection

• from consistent price vectors ρ with ρ[f∞] = 0

• to capacity-respecting st-flows with value at most L.

Furthermore, the value of the st-flow is ρ[headG∗(d̂)].



10.4. MAX LIMITED FLOW IN ST -PLANAR GRAPHS 137

Maximizing the value of the st-flow Our goal, therefore, is to find a consis-
tent price vector ρ with ρ[f∞] = 0 that maximizes ρ[headG∗(d̂)]. The following

Lemma 10.4.1 shows that we can take ρ to be the from-tailG∗(d̂) distance vector
with respect to c′.

Lemma 10.4.1. Suppose ρ is the from-r distance vector with respect to c for
some vertex r. For each vertex v,

ρ[v] = max{γ[v] : γ is a consistent price function such that γ[r] = 0} (10.3)

Proof. Let T be an r-rooted shortest-path tree. The proof is by induction on the
number of darts in T [v]. The case v = r is trivial. For the induction step, let v
be a vertex other than r, and let d be the parent dart of v in T , i.e. head(d) = v.
Let u = tail(d). Let γ be the vertex vector attaining the maximum in 10.3.

By the inductive hypothesis,

ρ[u] ≥ γ[u] (10.4)

Since γ is a consistent price function,

γ[v] ≤ γ[u] + c[d] (10.5)

By Lemma 7.1.3, ρ is itself a consistent price function, so γ[v] ≥ ρ[v], and d is
tight with respect to ρ, so

ρ[v] = ρ[u] + c[d] (10.6)

By Equations 10.4, 10.5, and 10.6, we infer ρ[v] ≥ γ[v]. We have proved ρ[v] =
γ[v].

10.4.3 The algorithm

Thus the algorithm for limited max st-flow is as follows.

1. Let d̂ be the dart of e whose tail is t.

2. Let c′ be the capacity assignment obtained from c by assigning capacity L
to d̂.

3. Let ρ be the from-tailG∗(d̂) distance vector in G∗ with respect to c′.

4. Let θ = AG∗ρ.

5. Return the flow assignment θ′ obtained from θ by setting θ′[d̂] and θ′[rev(d̂)]
equal to zero.

Lemma 10.4.2. The algorithm returns a max limited st-flow



138 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW

10.5 Max flow in general planar graphs

10.6 The algorithm

The input to the algorithm is a planar embedded graph G, two nodes s and t,
and a capacity function c. We require that c is nonnegative. (For traditional
maximum flow, c is positive on arcs and zero on the reverses of arcs.) The
algorithm maintains an st-flow γ.

Let f∞ be a face incident to t. The algorithm calculates an f∞-rooted
shortest-path tree T ∗ in the dual G∗ using c as a cost function. The algorithm
represents T ∗ by a table pred[·] giving, for each face f other than f∞, the parent
dart in T ∗, i.e. the dart in T ∗ whose head is f . The algorithm initializes γ to be
the circulation whose potential function is the function giving distances of faces
in T ∗. By Lemma 10.2.1, this circulation obeys capacities c. The algorithm
builds a spanning tree T of the primal G using edges not represented in the
dual shortest-path tree.

The algorithm then performs a sequence of iterations. In each iteration, the
algorithm saturates the s-to-t path in T , and then selects a saturated dart d̂
from this path and ejects it from T . It ejects from T ∗ the parent dart d′ of the
head of d̂ in T ∗. It then inserts d̂ into T ∗ and inserts rev(d′) into T .

def MaxFlow(G, c, s, t):
1 let T ∗ be an f∞-rooted shortest-path tree of darts in G∗ w.r.t. c
2 for each vertex f of G∗, assign pred[f ] := the dart in T ∗ whose head is f
3 for each dart d,
4 assign γ[d] := distc(head of d in G∗)− distc(tail of d in G∗)
5 let T be the tree formed by edges not represented in T ∗

6 while t is reachable from s in T :
comment: push flow to saturate s-to-t path in T

7 let P̂ be the s-to-t path in T

8 d̂ := arg min{cγ(d) : d ∈ P̂}
9 ∆ := cγ(d̂)

10 γ[d] := γ[d] + ∆ for every dart d in P̂

γ[(rev(d)] := γ[rev(d)]−∆ for every dart d in P̂

11 let q be the head of d̂ in G∗

12 eject d̂ from T and insert rev(pred[q]) into T

13 pred[q] := d̂ (comment: this replaces pred[q] in T ∗ with d̂)
14 return γ

We now state several invariants of the algorithm. The invariants all hold
initially by construction; we prove that each iteration preserves them.



10.7. ERICKSON’S ANALYSIS 139

Invariant 10.6.1 (Borradaile and Klein). γ is a capacity-respecting st-flow
with respect to c.

Proof. By Lemma 10.2.1, initially γ is a circulation that respects the capacities.
It is therefore a flow of value 0. In each iteration, some amount of flow is added
to the darts comprising an s-to-t path. This preserves the property that γ is an
st-flow. Since the amount added is no more than the minimum residual capacity
of the darts in the path, after the flow is added every dart has nonnegative
residual capacity.

Invariant 10.6.2 (Borradaile and Klein). An edge is represented in T iff it is
not represented in T ∗.

Proof. Line 5 establishes the invariant, and Lines 12 and 13 preserve it.

Invariant 10.6.3 (Borradaile and Klein). The darts of the dual tree T ∗ are
saturated by γ.

Proof. First we show that the invariant holds initially. Let ρ be the vector of
distances from f∞ in G∗ with respect to c. in G∗. Initially, for each dart d,

γ[d] = ρ[headG∗(d)]− ρ[tailG∗(d)]

Since initially T ∗ is a shortest-path tree, each of its darts satisfies

ρ[headG∗(d)] = ρ[tailG∗(d)] + c[d]

which shows that γ[d] = 0.

Line 10 preserves the invariant because it does not affect darts of T ∗. To
show that Line 13 preserves the invariant, note that after Line 10, the choice of
∆ ensures that cγ [d̂] = 0.

Corollary 10.6.4. Upon termination γ is a maximum st-flow that respects the
capacities c.

Proof. By Invariant 10.6.1, γ is an st-flow that respects the capacities c. Upon
termination, t is not reachable from s in T . This means that there exists an
st-cut, all of whose edges are not in T . By Invariant 10.6.2, every edge of this
cut is represented in T ∗, so the last dart d̂ inserted into T ∗ in Line 13 completed
a cycle in T ∗. Therefore, just before the insertion, headG∗(d̂) must have been

an ancestor of tailG∗(d̂) in T ∗. It follows that after the insertion T ∗ contains

a cycle C of darts, such that d̂ ∈ C. By invariant 10.6.3, all the darts of C
are saturated by γ. Since ejecting d̂ from T separated T into two connected
components, such that s is in the component containing tailG(d̂), the darts of
C form a saturated st-cut (rather than a ts-cut).



140 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW

10.7 Erickson’s analysis

10.7.1 Dual tree is shortest-path tree

Invariant 10.7.1. T ∗ is an f∞-rooted shortest-path tree with respect to the cost
function c− γ.

Proof. By Invariant 10.6.1, every dart has nonnegative residual capacity, hence
nonnegative cost. By Invariant 10.6.3, every dart in T ∗ has zero residual capac-
ity, hence zero cost.

Invariant 10.7.2. Let γ′ be any st-flow whose value is the same as that of
γ. Then T ∗ is an f∞-rooted shortest-path tree with respect to the cost function
c− γ′.

Proof. Since γ and γ′ have the same value, γ − γ′ is a circulation, so there is a
potential vector ρ in vertex space such that γ − γ′ = AG∗ρ. Therefore

c− γ′ = c− γ + γ − γ′ = c− γ +AG∗ρ

By Invariant 10.7.1, T ∗ is a shortest-path tree with respect to c − γ, so by
Corollary 7.1.2, it is a shortest-path tree with respect to c− γ′.

10.7.2 Crossing numbers

Let P be an s-to-t path and let D be a set of darts. The crossing number of D
with respect to P is

πP (D) = 〈η(P ),η(D)〉
As we shall see, crossing numbers increase as the algorithm executes.

Lemma 10.7.3. Let C be a directed cut. Let P be an s-to-t path. Then C is
an s-t cut iff πP (C) = 1.

To measure progress, we fix one s-to-t path Q and consider crossing numbers
with respect to Q.

Lemma 10.7.4 (Erickson). Every time T ∗[headG∗(d)] changes for some dart
d, πQ(T ∗[headG∗(d)]) increases by 1.

Proof. Consider an iteration, and let d̂ be the dart ejected from the primal
tree T . Let T ∗ be the dual tree before the iteration. Let D be the set
{d̂} ∪ {d : d a descendent of headG∗(d̂) in T ∗}. D is the set of darts for which

T ∗[headG∗(d)] changes when d̂ is inserted into T ∗. Let R = T ∗[headG∗(d̂)], and

let R′ = T ∗[tailG∗(d̂)]◦ d̂. For every d ∈ D, the iteration replaces the prefix R of
T ∗[headG∗(d)] with R′. It therefore suffices to show that πQ(R′) = πQ(R) + 1.

Let P̂ be the s-to-t path chosen in the iteration. Let C be the fundamental
cycle of d̂ with respect to T ∗ in G∗. The only edge represented both in C
and in P̂ is the edge of d̂, and it is represented in the same direction in each,



10.8. COVERING SPACE 141

so 〈η(P̂ ),η(C)〉 = 1. By Lemma 10.7.3, therefore, C is a directed cut in the
primal. Again by Lemma 10.7.3, 〈η(Q),η(C)〉 = 1. Since η(C) = η(R′)−η(R),
this completes the proof.

Invariant 10.7.5 (Erickson). For any face f , T ∗[f ] is the shortest f∞-to-f
path with respect to c among all such paths with crossing number πQ(T ∗[f ]).

Proof. Let λ be the value of the flow γ. Let γ′ = λη(Q). Let i = πQ(T ∗[f ]).
With respect to the cost function c − γ′, any path P with crossing number i
w.r.t. Q has cost

(c− γ′)(P ) = c(P )− λ〈η(Q),η(P )〉
= c(P )− λi (10.7)

Let R be any f∞-to-f path such that πQ(R) = i. By Invariant 10.7.2,

(c− γ′)(R) ≥ (c− γ′)(T ∗[f ])

so by two applications of (10.7),

c(R)− λi ≥ c(T ∗[f ])− λi

so c(R) ≥ c(T ∗[f ]).

10.8 Covering space

Need to write about the notion of a covering space

10.8.1 The Universal Cover

The universal cover of G = (A, π) with respect to a simple dual path Q is an
infinite planar graph G = (A, π), where A = {ai : a ∈ A, i ∈ Z}. For every

orbit d1, d2, . . . , dk) of π and every i ∈ Z, there is an orbit (d1i , d
2
i , . . . , d

k
i ) of π∗,

where

di =

{
di−1 if rev(d) ∈ Q
di otherwise

Informally, G can be constructed as follows. Consider an embedding of G on
a the plane where start(Q) is the infinite face. Remove the faces corresponding
to start(Q) and end(Q), and cut the embedding along Q. Create an infinite
sequence of copies Gi of the annuli thus obtained. For each vertex v of G, there
is a corresponding vertex vi of Gi (vi is called a lift of v). “Glue” consecutive
copies Gi−1 and Gi by edges ui−1vi for every edge uv ∈ Q. See Figure 10.2.
Edge costs in G are inherited from G.

There is a natural projection map ω : G → G that maps vi to v. The
preimage of any path P in G is an infinite set of paths in G∗, which are called
the lifts of P . If start(P ) = v and end(P ) = u, then for any integer i there is a



142 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW

o

Q

o

o

Figure 10.1: Cutting a graph G along a dual path Q and “opening up” the
embedding.

o-3 o-2 o-1 o0 o1

Figure 10.2: The universal cover G of G w.r.t. Q

lift of P that starts at vi, and ends at ui+πQ(P ). The faces start(Q) and end(Q)

lift into two unbounded faces of G. Every other face in G lifts to an infinite
sequence of faces in G.

Lemma 10.8.1. Let u, v be vertices of G. Let P be a shortest u-to-v path
among all u-to-v paths with crossing number i w.r.t. Q. Then, for any j, P is
a projection of a shortest uj−i-to-vj path in G.

Problem 10.1. Prove Lemma 10.8.1.

10.9 Finishing the proof

To avoid clutter denote f∞ by o. For a vertex r of G∗, let P`(r) denote T ∗[r] at
the time that πQ(T ∗[r]) is `. Let P`(r) denote the o−`-to-r0 lift of P`(r) in G∗.

Lemma 10.9.1. For every vertex r ∈ G∗, the paths {P`(r)}` are mutually
noncrossing.

Proof. By Invariant 10.7.5, P`(r) is a shortest path among the o-to-r paths
whose crossing number is `. By Lemma 10.8.1, P`(r) is a shortest path in G∗.
Since we assume shortest paths are unique, {P`(r)}` are mutually noncrossing
since a crossing would give rise to two distinct shortest paths with the same
endpoints.

Theorem 10.9.2. Each dart is ejected from T ∗ at most once during the exe-
cution of the algorithm.



10.10. EFFICIENT IMPLEMENTATION 143

o-3 o-2 o-1 o0 o1

p0q0

Figure 10.3: Proof of Theorem 10.9.2. i = −1, j = 1, and d̂ is not enclosed by
C.

Proof. Consider the universal cover G∗ of G∗ with respect to Q. Let d̂ = pq
be a dart. Assume neither d̂ nor rev(d) belong to Q (the cases where d ∈ Q or
rev(d) ∈ Q are handled in a similar manner).

Assume d̂ is ejected from T ∗ twice. Let i be πQ(T ∗[q]) just before the first

time d̂ is ejected from T ∗, and let j be πQ(T ∗[q]) just before the second time d̂

is ejected from T ∗. By Lemma 10.7.4, i + 1 < j. We have: Pi(q) = Pi(p) ◦ d̂,

d̂ /∈ Pi+1(q), Pj(q) = Pj(p) ◦ d̂, and d̂ /∈ Pj+1(q).
By Invariant 10.7.5 and Lemma 10.8.1, P`(r) is a shortest path in G∗ for

any ` and r. Consider the cycle C in G∗ that consist of Pi(p), rev(Pj(p)), and
a o−j − to − o−i path through the unbounded face t∗ of G (t∗ is the lift of t).

See Figure 10.3. Since Pi(q) = Pi(p) ◦ d, p0q0 and Pj(q) = Pj(p) ◦ d, neither d̂
nor its reverse belong to C. Consider Pi+1(q). Since oi+1 is enclosed by C, and
since d /∈ Pi+1(q), q0 must be enclosed by C, or else shortest paths must cross.
Similarly, since oj+1 is not enclosed by C, and since d /∈ Pi+1(q), q0 must not
be enclosed by C, a contradiction.

10.10 Efficient Implementation

The efficient implementation, is almost identical to that of the MSSP algorithm
in Chapter 7. The roles of the primal and dual trees are swapped. The tree T is
represented by a dynamic tree that supports Link, cut, AncestorFindMin,
AddToAncestors, and evert in O(log n) (amortized) time. The tree T ∗ is
represented by a parent list. As was the case in Chapter 7, each step of the
algorithm can be implemented in (amortized) O(log n), so the total execution
time is O(n log n)

10.11 Chapter Notes

The maximum st-flow algorithm is due to Borradaile and Klein [Borradaile and Klein, 2006,
?]. Its analysis and two simplifications are due to Erickson [Erickson, 2010] (the
simplifications were also suggested by Schmidt et al. [Schmidt et al., 2009]).



144 CHAPTER 10. SINGLE-SOURCE, SINGLE-SINK MAX FLOW


