
Structure Theorem for
Steiner tree

0.1 Statement of subroutine lemmas

For the following three lemmas, G is a planar embedded graph, P is an 1 + ε-
short path forming part of the boundary of G, and T is a tree in G that intersects
P only at leaves of T .

The first lemma is illustrated in Figure 1.

Lemma 0.1.1 There is a procedure Span0 such that Span0(P, T ) returns a
subpath of P spanning V (T )∩V (P ) whose total length is at most (1+ε)length(T ).

Figure 1: A subgraph is squished to a 1 + ε-short path. The resulting subpath
includes all vertices common to the subgraph and the path, and is not much
longer.

Proof: Let P ′ be the shortest subpath of P that spans all the vertices of
T ∩ P . There is a path Q in T between the endpoints of T . Since P is 1 + ε-
short, length(P ′) < (1 + ε)length(Q) ≤ (1 + ε)length(T ).

Definition 0.1.2 (Joining vertex) Let H be a subgraph of G such that P is
a path in H. A joining vertex of H with P is a vertex of P that is the endpoint
of an edge of H − P .

The second lemma is illustrated in Figure 2. The proof is given in Sec-
tion 0.2.7.

Lemma 0.1.3 There is a procedure Span1(P, T, r) that, for a vertex f of T ,
returns a subgraph of P ∪T of length at most (1 + ε)length(T ) that spans all the
vertices of {r} ∪ (V (T )∩ V (P )) and has at most ε−1.45 joining vertices with P .
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Figure 2: The output subgraph spans all vertices of P spanned by the input
subgraph, and also spans x, but the output subgraph has fewer joining vertices
with P .

The third lemma is illustrated in Figure 3. The proof is given in Section 0.2.8.

Lemma 0.1.4 There is a procedure Span2(P, T, x, y) that, for x and y vertices
of T , returns a subgraph of P ∪ T of length at most (1 + 2ε+ ε2)length(T ) that
spans all the vertices of {x, y}∪ (T ∩P ) and has at most 2ε−2.5 joining vertices
with P . are constants.

x y

Figure 3: The output subgraph spans all vertices of P spanned by the input
tree, and also spans x and y, but the output subgraph has fewer joining vertices
with P .

0.2 Structure of Steiner tree within bricks

Lemma 0.2.1 The counterclockwise boundary of a brick B equals WB ◦ SB ◦
EB ◦NB, where

1. NB is 1-short in B, and every proper subpath of SB is (1 + ε)-short in B.

2. SB = S1 ◦ S1 ◦ · · · ◦ Sκ where, for each vertex x of Si[·, ·),

length(Si[·, x]) ≤ ε dist(x,NB) (1)

Note that some of the paths Si might be empty.

Theorem 0.2.2 (Structural Property of Bricks) Let B be a plane graph
with boundary N ∪ E ∪ S ∪W , satisfying the brick properties of Lemma 0.2.1.
Let F be a set of edges of B. There is a forest F̃ of B with the following
properties:

F1) If two vertices of the boundary of B are connected in F then they are
connected in F̃ .

F2) The number of joining vertices of F̃ with N and with S is at most 4(κ+
1)ε−2.5.

F3) length(F̃ ) ≤ (1 + 5ε)(length(F ) + length(E) + length(W )).
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0.2.1 Paths P̄0, . . . , P̄κ

We now present the proof of the theorem. We refer to N as north, etc. We
define Pκ to be the eastern boundary E of the brick. We define P̄κ = Pκ. We
inductively define P̄κ−1, P̄κ−2, . . . , P̄0 as follows. (The definition is illustrated in
Figure 4.) For i = κ−1, κ−2, . . . , 0, if F ∪W has an Si-to-north path that does
not intersect P̄i+1, P̄i+2, . . . , P̄κ, let Pi be the rightmost such path, and define
P̄i = Si[·, start(Pi)] ◦ Pi. If there is no such path, define P̄i = ∅.

Let P be a nontrivial P̄i-to-north path or P̄i-to-south path in F . We call P
a sprit of P̄I if P − start(P ) avoids P̄i, . . . , P̄κ. It is a northern sprit if end(P )
belongs to N and a southern sprit if end(P ) belongs to S.

Because Pi is rightmost, we obtain the following lemma, whose proof is
outlined in Figure 5.

Lemma 0.2.3 (Sprit Lemma) For i = 0, 1, . . . , κ,

• if P is a northern sprit of P̄i then end(P ) is strictly left of end(Pi) on N ,
and

• if P is a southern sprit of P̄i then end(P ) is strictly left of start(Pi) on S,
and

Inequality 1 implies that, for i = 0, . . . , κ− 1,

length(P̄i) ≤ (1 + ε)length(Pi) (2)

0.2.2 The forest F ′ and paths Q0, . . . , Qκ

Let F ′ be a minimal subgraph of F ∪ W ∪
⋃κ
i=0 P̄i that contains

⋃
i P̄i and

that preserves connectivity among vertices of the boundary of B. Since F ′ is a
subgraph of F ∪W ∪

⋃κ
i=0 P̄i, Inequality 2 implies that

length(F ′) ≤ length(F ∪W ∪
κ⋃
i=0

P̄i)

≤ length(E) + length(W ) + (1 + ε)length(F )

For i = 0, . . . , κ− 1, if there is a path in F ′ from P̄i to P̄i+1 ∪ P̄i+2 ∪ · · · ∪ P̄κ
whose internal vertices are not in P̄i ∪ · · · ∪Pκ, let Qi be such a path, as shown
in Figure 6. Otherwise let Qi = ∅.

Claim 0.2.4 Every internal vertex of Qi has degree two in F ′.

Proof: Assume for a contradiction that some internal vertex u of Qi has an
incident edge e not on Qi. By minimality of F ′, the edge e must be required to
preserve connectivity among vertices of the boundary of B. Let v be a boundary
vertex of B such that removing e separates u and v. Let P be the u-to-v path
in F ′.
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Figure 4: The top figure shows a fragment of a brick with P̄κ defined as the
eastern boundary. The second figure shows Pκ−1, defined as the rightmost
south-to-north path that avoids Pκ. The third figure shows P̄κ−, which is ob-
tained from Pκ−1 by prepending the to-start(Pκ) prefix of Sκ−1. There is no
south-to-north path that originates in Sκ−2 and avoids P̄κ−1, so P̄κ−2 is empty.
The fourth figure shows Pκ−3, defined as the rightmost south-to-north path that
does not intersect Pκ−1 or Pκ. The fifth figure shows P̄κ−3, which is obtained
from Pκ−3 by prepending a prefix of Sκ−3. Note that south-to-north paths
originating in this prefix become P̄κ−3-to-north paths.
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Figure 5: Suppose F contains a path P from Pi to a southern vertex to the
right of start(Pi) (in the first and second figures) or from Pi to a northern
vertex to the right of end(Pi) (in the third figure). In the first and third figure,
the magenta contour indicates that Pi is not the rightmost Si-to-north path
avoiding P̄i+1, . . . , P̄κ, a contradiction. In the second figure, end(P ) belongs
to Si+1. Ordinarily end(P ) would therefore belong to P̄i+1, but in this case
P̄i+1 = Pi+1 =. However, the magenta contour indicates that there is an Si+1-
to-north path avoiding P̄i+2, . . . , P̄κ, a contradiction.
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Pκ-3
Qκ-3
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Figure 6: The paths Qκ−1 and Qκ−3 are signified by the dashed lines.
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If v is on P̄j for some j > i then u and v are connected via P̄j and a suffix
of Qi, a contradiction. Otherwise, a prefix of Qi together with P violates the
Sprit Lemma (Lemma 0.2.3).

0.2.3 The forest F̃

The construction of F̃ is as follows. Each connected component K of F ′−
⋃
iQi

is replaced with a component K̃ that achieves at least K’s connectivity among
boundary vertices of B and endpoints of paths Qi. This ensures that K̃ =⋃
K K̃ ∪

⋃
iQi achieves the connectivity of F ′ among boundary vertices of B,

which is property F1 of Theorem 0.2.2.
For each component K, moreover, length(K̃) ≤ (1 + 3ε + ε2)length(K).

Therefore

length(F̃ ) ≤
∑
i

length(Qi) +
∑
K

length(K̃)

≤
∑
i

length(Qi) + (1 + 3ε+ ε2)
∑
K

length(K)

≤ (1 + 3ε+ ε2)length(F ′)

≤ (1 + 3ε+ ε2)((1 + ε)length(F ) + length(E) + length(W ))

which proves part F3 of the theorem, assuming ε ≤ 1/5.
Our construction will ensure that there are at most κ + 1 components K

for which K̃ has joining vertices with the boundary of B, and for each of these
components, K̃ has at most 4ε−2.5 joining vertices. Thus the total number of
joining vertices is 4(κ+ 1)ε−2.5.

0.2.4 Type-1 and type-2 components

For each connected component K of F ′−
⋃
iQi, the construction of K̃ depends

on what kind of component it is. We sayK is a type-1 component if the boundary
vertices in K are all internal vertices of S or all internal vertices of N , and is a
type-2 component otherwise.

For i = 0, . . . , κ, let Ki be the connected component of F ′ −
⋃
j Qj that

contains P̄i (if P̄i 6= ∅).

Lemma 0.2.5 If K is a type-2 component then K = Ki for some i.

Proof: By minimality of F ′, every component of F ′ contains some boundary
vertices.

• Suppose K contains a vertex of E. Since P̄κ = E and P̄κ belongs to
F −

⋃
iQi, K contains a vertex of S (namely start(P̄κ)) and a vertex of

N (namely end(P̄κ)).
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• Suppose K contains a vertex of W . Recall that F ′ is a subgraph of F ∪
W ∪

⋃
i P̄i that preserves connectivity among vertices of the boundary. It

follows that K contains a vertex of S and a vertex of W .

• Suppose K does not contain a vertex of E and a vertex of W . Since K
is not a type-1 component, it must therefore contain a vertex of S and a
vertex of N .

K, therefore, contains a vertex of S and a vertex of N . Let P be a south-to-
north path in K, and let i be the integer such that start(P ) belongs to Si[·, ·).
If start(P ) belongs to Si[·, start(Pi)] then start(P ) belongs to P̄i, so start(P )
belongs to Ki. If not, then, by choice of Pi, the rightmost P intersects P̄j for
some j > i, so start(P ) belongs to Kj .

0.2.5 Construction of K̃

First suppose K is of type 1. If its boundary vertices are in S, we let K̃ :=
Span0(S,K). If its boundary vertices are in N , we let K̃ := Span0(N,K). In
either case, K̃ has no joining vertices, and length(K̃) ≤ (1 + ε)length(K).

Now we consider type-2 components. By Lemma 0.2.5, K0, . . . ,Kκ are the
only type-2 components. For i = 0, . . . , κ, we obtain K̃i from Ki by

(a) separating Ki into two parts, KN
i and KS

i ,

(b) applying Span2 or Span1 to each part, and

(c) adding a subpath of Si[·, start(Pi)].

By Lemmas 0.1.3 and 0.1.4, the total number of joining vertices is at most 4ε−2.5,
and the total length is at most (1 + 2ε+ ε2)length(Ki) + length(Si[·, start(Pi)]),
which is in turn at most (1+3ε+ε2)length(Ki). These are the properties needed
in the analysis in Section 0.2.3.

0.2.6 Decomposition of Ki into KN
i and KS

i

For i = 0, . . . , κ, if P̄i 6= ∅, let xi be the first vertex on P̄i such that there is
an xi-to-north sprit PN . If end(PN ) were right of end(P̄i) on N then it would
violate the Sprit Lemma, so it is strictly left of end(P̄i) on N .

Lemma 0.2.6 For any vertex x of P̄i(xi, ·], there is no x-to-south sprit of Pi.

Proof: Let PN be an xi-to-north sprit. Suppose P is an x-to-south sprit. By
the Sprit Lemma, PN and P are both left of P̄i, so they cross, forming a cycle
with P̄i. This contradicts the minimality of F ′.

Lemma 0.2.7 If there is an integer j < i such that Qj connects to P̄i then
end(Qj) = xi.
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Proof: The proof is illustrated in Figure 7. CombiningQj with the to-start(Qj)
prefix of Pj yields a southern spar of P̄i. Therefore, by Lemma 0.2.6, end(Qj) is
not strictly after xi on P̄i. Combining Qj with the from-start(Qj) prefix of Pj
yields a northern spar of P̄i. Therefore, by choice of xi, end(Qj) is not strictly
before xi on P̄i.

PiPj
xi

Qj

PiPj
xiQj

Pj
Pi

xi

Qj

Figure 7: The first configuration is impossible since rev(Qj) connects Pi to
N (via Pj), which would contradict the choice of xi. The second and third
configurations are impossible since there is no way for an xi-to-N path to avoid
crossing Pj or Qj .

As illustrated in Figure 8, we decompose Ki into edge-disjoint subgraphs
KN
i and KS

i as follows. KN
i consists of the subpath P̄i[xi, ·] and paths between

this subpath and N . KS
i consists of the subpath P̄i[·, xi] and paths between

this subpath and S.

Our intention is to apply the procedure Span1 or Span2 to each of KN
i

and KS
i , as shown in Figure 9, obtaining edge-disjoint trees K̃N

i and K̃S
i , each

having at most 2ε−2.5 joining vertices with N and S, respectively. Because each
of these two trees contains xi, their union is connected.

There are two additional issues, however. First, consider the case, depicted in
Figure 10, in which the vertex xi is not on Pi but is on the subpath Si[·, start(Pi)]
prepended to Pi to form P̄i. In this case, the tree T̃Si is not required to include
the vertices of Si[xi, start(Pi)] other than xi. In this case, therefore, we include
this subpath in K̃i.
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Pixi xi

Ki Ki
N

xi

Ki
S

Figure 8: The component Ki is split at xi into the northern part, KN
i , and the

southern part, KS
i .

xi

Ki
N

xi

Ki
S

xi

Ki
S~

xi

Ki
S~

Figure 9: The northern subtree and the southern subtree are separately simpli-
fied (to reduce their number of joining vertices) using Span1.

The second issue is this: if Qi 6= ∅, we need the new tree K̃i to include
start(Qi). Fortunately, the procedure Span2 allows us to specify two vertices
to be spanned. The construction of K̃i is as follows. First we define K̃N

i and
K̃S
i :

• IfQi = ∅, we define K̃N
i := Span1(N,KN

i , xi) and K̃S
i := Span1(S,KS

i , xi).

• If start(Qi) belongs to KN
i , we define K̃N

i := Span2(N,KN
i , xi, start(Qi))

and K̃S
i := Span1(S,KS

i , xi).

• Otherwise, we define K̃S
i := Span2(S,KS

i , xi, start(Qi)) and K̃N
i := Span1(N,KN

i , xi)

We then define K̃i to be the union of K̃N
i , K̃S

i , and Si[xi, start(Pi)]. The analysis
of length and number of joining vertices is as described in Section 0.2.5.

0.2.7 Span1

In this section, G is a planar embedded graph, P is an 1 + ε-short path forming
part of the boundary of G, r is a vertex of G, and T is an r-rooted tree of G
that intersects P only at leaves of T .
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Pi

xi

Ki

Figure 10: When xi does not belong to Pi, the tree TSi does not include the
vertices of Si(xi, start(Pi)] so T̃Si need not. In this case, therefore, we include
the subpath S[xi, start(Pi)] in T̃ .

r r
e1 e3e2

Figure 11: Replace the tree T with the minimal subpath of P that contains all
leaves of T , together with the path to P that starts at a middle child edge of
the root.

For a rooted subtree T ′ of T , every root-to-leaf path of T ′ ends on P , so
these paths are ordered according to the positions of the leaves along P . In
this section and the next, we are particularly interested in the leftmost and
rightmost root-to-leaf paths.

In this section, we give the proof of Lemma 0.1.3, which is paraphrased here:

There is a procedure Span1(P, T, r) that returns a subgraph of T ∪P
that (a) has length at most (1+ε)length(T ), (b) spans all the vertices
of {r} ∪ (V (T ) ∩ V (P )), and (c) has at most ε−1.45 joining vertices
with P .

We start with a subprocedure.

Lemma 0.2.8 There is a subprocedure ReduceDegree(P, T, r) that, if the
root r of T has more than two children, returns a subpath P ′ of P and an
r-to-P ′ path Q consisting of edges of T such that that

• P ′ ∪Q spans {r} ∪ (V (T ′) ∩ V (P )), and

• length(P ′) ≤ (1 + ε)length(T −Q).

Proof: Let Q1 and Q3 denote, respectively, leftmost and rightmost root-to-
leaf paths in T , and let e1 and e3 be the first edge in, respectively Q1 and Q2.
Because G is planar, P is on the boundary of G, and r has at least two children,
we have e1 6= e3. Let e2 be another child edge of r, and let Q2 be the root-to-leaf
path in T that starts with e2.

The procedure returns the tree consisting of Q2 and the minimal subpath of
P that contains all leaves of T . The only joining vertex is the end of Q2. Since
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u

Figure 12: The edges in bold are the zig-zag edge.

rev(Q1) ◦Q3 is a start(P ′)-to-end(P ′) path and P is 1 + ε-short, length(P ′) ≤
length(Q1) + length(Q3).

By repeated application of ReduceDegree, we obtain

Lemma 0.2.9 There is a subprocedure ReduceDegrees(P, T, r) that returns
a subtree T ′ of T and a collection of subpaths P1, . . . , Pk of P such that

• T ′ ∪
⋃
i Pi spans {r} ∪ (V (T ) ∩ V (P )) and

• length(
⋃
i Pi) ≤ (1 + ε)length(T − T ′)

Now we prove Lemma 0.1.3 by describing Span1(P, T, r). Let T ′ be the tree de-
rived from T in Lemma 0.2.9. Every vertex of T ′ has at most two children. We
will use an argument that requires that every nonleaf vertex has two children.
We therefore modify T ′ by splicing out each nonroot vertex with exactly one
child, merging the two incident edges into a single edge whose length is the sum

of the lengths of the merged edges.
This will ensure that every nonleaf vertex (except possibly the root r) has two
children.

• If r has two children, we define T ′′ to be the resulting modified tree. We
show how to replace T ′′ with an r-rooted tree T̂ that satisfies properties (a)
through (c) of Lemma 0.1.3.

• If r has only one child, r′, we define T ′′ to be the r′-rooted subtree, and
apply the argument of Case 1 to obtain a replacement r′-rooted tree T̂ .
Then T̂∪{r-to-r′ path} satisfies properties (a) through (c) of Lemma 0.1.3.

Say that an edge uv of T ′′ is a zig-zag edge if the two-step path from the
parent p(u) of u to u to v either goes from p(u) to a left child and from u
to a right child, or goes from p(u) to a right child and from u to a left child.



12

level k

Figure 13: For each level-k vertex u, the subtree rooted at u is replaced with the
minimal subpath P ′ of P containing the leaves of that subtree, together with a
shortest u-to-P ′ path. The new subtrees are indicated in red.

The above definition is inapplicable if u is the root of T ′. Therefore we (rather
arbitrarily) define the left edge of the root of T ′′ to be a zig-zag edge.

As in breadth-first search, the level of a vertex is equal to the number of
edges traversed when going from the root of T ′ to the vertex. The level of an
edge is equal to the level of its endpoint that is closer to the root. For each level
i, let Li denote the total length of the zig-zag edges at level i.

Let k be a level to be determined later. The procedure obtains a tree T̂ from
T ′′ as follows (see Figure 13). For each level-k vertex u, the procedure applies
a subprocedure similar to ReduceDegree: replace the u-rooted subtree of T ′′

(which we denote T ′′u ) with another u-rooted tree T̂u consisting of

• the minimal subpath P ′ of P spanning the vertices of T ′′u ∩ P , and

• the u-to-P ′ path that includes u’s zig-zag child edge.

The construction ensures that T̂ spans all the vertices of V (T ′′)∩ V (P ). More-
over, the number of joining vertices is 2k. We shall ensure that k ≤ logφ ε

−1,

where φ = 1+
√
5

2 is the golden ratio. Hence the number of joining vertices is at
most ε−1.45.

It remains to show that there is a choice of k for which length(T̂ ) ≤ (1 +
ε)length(T ′′). The argument is illustrated in Figure 14. The length of the path
P ′ is not much longer than the path Q1 through T ′′u between the endpoints of
P ′. The length of the shortest u-to-P ′ path is no longer than any u-to-P ′ path
Q2 in T ′′u . Thus

length(T̂u) ≤ length(Q1) + length(Q2) (3)

Since Q1 and Q2 are contained in T ′′u , we would like to argue that length(Q1) +
length(Q2) ≤ length(T ′′u ). However, that might not be true because Q1 and Q2

overlap.
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e
u

Q1

P'

Q2

level k

level k+3

level k+2

level k+1

Figure 14: We bound the length of the replacement tree T̂u by the length of
the path Q1 through the tree from its leftmost leaf to its rightmost leaf, plus
the length of the path Q2 from the root to one of its leaves. We choose Q2 to
first traverse two zig-zag edges and subsequently not traverse any zig-zag edges.
The dashed edges in the figure are zig-zag edges that are in neither Q1 nor Q2.
The total length of these edges is a credit against the debit represented by the
edge e that appears in both Q1 and Q2.

We address this difficulty by selecting the path Q2 carefully and by selecting
the level k carefully. As shown in Figure 14, we can select Q2 so it shares only
one edge e with Q1. Moreover, in arguing that T̂u is not much longer than T ′′u ,
we can use the fact that there are many edges that belong to T ′u but do not

belong to T̂u, including in particular the dashed edges in Figure 14.

For each level-k vertex u, we choose the path Q2 to be the path starting at
u that traverses the next two zig-zag edges and then continues to a leaf without
taking any more zig-zag edges. For example, if, as in Figure 14, u is a right
child of its parent, then Q2 traverses u’s left child edge, then goes right and
continues going right until reaching a leaf.

The advantage of this choice of path is that, after the first two edges, Q2

avoids all zig-zag edges. Note also that Q1 also avoids all zig-zag edges except
for the child zig-zag child edge of u. Let e denote this edge. Since e is the only
edge common to Q1 and Q2, and none of the zig-zag edges at levels k + 2 and
above belong to either Q1 or Q2,

length(Q1) + length(Q2) + length(zig-zag edges at levels k + 2, k + 3, . . .)

≤ length(T ′′u ) + length(e)
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where we include here only zig-zag edges belonging to T ′′u .
We combine this inequality with Inequality 3, obtaining

length(T̂u)+length(zig-zag edges at levels k+2, k+3, . . .) ≤ length(T ′′u )+length(e)
(4)

Note that edge e is a level-k zig-zag edge. Now we sum 4 over all level-k vertices
u, obtaining∑

u

length(T̂u) + Lk+2 + Lk+3 + · · · ≤
∑
u

length(T ′′u ) + Lk (5)

We add the lengths of edges at levels less than k to both sides. These edges
appear in both T ′′ and T̂ , so we obtain

length(T̂ ) + Lk+2 + Lk+3 + · · · ≤ length(T ′′) + Lk (6)

Combining this inequality with the following claim completes the proof of prop-
erty (c).
Claim: There exists k ≤ logφ ε

−1 such that Lk ≤ ε length(T ′′) +Lk+2 +Lk+3 +

· · · , where |phi = 1+
√
5

2 is the golden ratio
Let k0 = blogφ ε

−1c. Define F−2, F−1, F0, F1, F2, . . . , Fk0 by the recurrence

Fk0 = 1

Fk0−1 = 1

Fk = Fk+2 + Fk+3 + Fk+4 + · · ·+ Fk0

The recurrence implies that Fk = Fk+1 + Fk+2 for −2 ≤ k ≤ k0 − 2. Therefore
Fk ≥ φk0−k−1, so in particular F−2 ≥ φk0+1 > ε−1.

Assume the claim is false. Then, for each integer 0 ≤ k ≤ k0, Lk >
ε length(T ′′)Fk, so

L0 + L1 + L2 + · · ·+ Lk0 > ε length(T ′′)(F0 + F1 + F2 + · · ·+ Fk0)

= ε length(T ′′)(F−2)

> ε length(T ′′)(ε−1),

which is a contradiction. Thus the claim is true.

0.2.8 Span2

Again G is a planar embedded graph, P is an 1 + ε-short path forming part of
the boundary of G, and T is an r-rooted tree of G that intersects P only at
leaves of T .

In this section, we give the proof of Lemma 0.1.4, which is reproduced here:

There is a procedure Span2(·, ·, ·, ·) such that, for vertices x, y of K,
Span2(P,K, x, y) returns a subgraph of P ∪ K of length at most
(1 + 2ε+ ε2)length(T ) that spans all the vertices of {x, y}∪ (K ∩P )
and has at most 2ε−2.5 joining vertices with P , where c is a constant.
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Figure 15: The original tree T is shown at the top. It consists of an x-to-y path
Q and trees T1, . . . , Tk rooted at vertices of Q. In the first step, the subpath Q2

and the middle trees are replaced by the paths Q4 and Q5 and the subpath P ′

of P . In the second step, Span1 is applied to the non-middle trees.

Let Q be the unique x-to-y path in T . Removing the edges of Q from T
breaks T into a forest consisting of trees rooted at vertices of Q with leaves on
P . Let r1, . . . , rk be the roots in order along Q and let T1, . . . , Tk be the trees.

If k < 2dε−1e then obtain a tree T̂ from T by applying Span1 to each tree

Ti, replacing it with a tree T̂i that has at most ε−1.45 joining vertices. It follows
that T̂ has at most 2ε−2.45 joining vertices.

Assume therefore that k ≥ 2dε−1e. For j = 1, 2, . . . , dε−1e, define f(j) =
k − dε−1 + j, and define Lj = length(Tj) + length(Tf(j)). Let j∗ = minarg jLj .
Then

Lj∗ ≤ ε length(T1 ∪ T2 ∪ · · · ∪ Tk) (7)

The transformations are illustrated in Figure 15. Write Q = Q1 ◦ Q2 ◦ Q3

where start(Q2) = rj∗ and end(Q2) = rf(j∗). Let Q4 be the leftmost root-to-leaf
path in Tj∗ and let Q5 be the rightmost root-to-leaf path in Tf(j∗). Say a tree

Tj is a middle tree if j∗ ≤ j ≤ f(j∗). As illustrated in Figure 15, we obtain T̂
from T as follows:

1. Remove Q2 and the middle trees, and add Q4, Q5, and the end(Q4)-to-
end(Q5) subpath P ′ of P .

2. Apply Span1 to each of the non-middle trees.

Since there are at most ε−1 non-middle trees, and each is replaced with a tree
with at most ε−1.45 joining vertices, there are at most ε−2.45 +2 joining vertices.
(The two come from Q4 and Q5.)

The increase in length due to the second step is at most 1 + ε times the
length of the non-middle trees. Since P is 1 + ε-short and rev(Q4) ◦Q2 ◦Q5 is
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a start(P ′)-to-end(P ′) path,

length(P ′) ≤ (1 + ε)length(Q4) + length(Q2) + length(Q5) (8)

Since Q4 is part of Tj∗ and Q5 is part of Tf(j∗),

length(Q4) + length(Q5) ≤ Lj∗ (9)

The increase in length due to the first step is

length(P ′) + length(Q4) + length(Q5)− length(Q2)− length(middle trees)

≤ length(P ′)− length(Q2)

≤ (1 + ε)[length(Q4) + length(Q2) + length(Q5)]− length(Q2)

≤ (1 + ε)[length(Q4) + length(Q5)] + ε length(Q2)

≤ (1 + ε)ε length(T1 ∪ · · · ∪ Tk) + ε length(Q2)

Hence the total increase is at most (1 + ε)ε+ ε times the length of T .


